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Abstract

We develop an abstract framework for obtaining optimal rates of mixing
and higher order asymptotics for infinite measure semiflows. Previously, such
results were restricted to the situation where there is a first return Poincaré
map that is uniformly expanding and Markov. As illustrations of the method,
we consider semiflows over nonMarkov Pomeau-Manneville intermittent maps
with infinite measure, and we also obtain mixing rates for semiflows over Collet-
Eckmann maps with nonintegrable roof function.
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1 Introduction

Decay of correlations is a delicate phenomenon for continuous time dynamical sys-
tems. Exponential decay of correlations has been established for certain classes of
Anosov flows [16, 19, 30, 48], and the techniques have been extended to various
(non)uniformly hyperbolic flows [3, 4, 6, 7, 8, 15]. Nevertheless, the class of flows for
which exponential decay has been established is very restricted.

The situation for superpolynomial decay of correlations (rapid mixing) is some-
what better. Rapid mixing for (nontrivial) basic sets for typical Axiom A flows was
established in [20, 21], and was extended in [33] to nonuniformly hyperbolic flows
given by a suspension over a Young tower with exponential tails [49].
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For slowly mixing nonuniformly hyperbolic flows (suspensions over Young tow-
ers with polynomial tails [50]), the method of [20, 33] was used in [34] to establish
polynomial decay of correlations.

Recently [38] developed operator renewal theory for continuous time dynamical
systems, extending the discrete time theory of [24, 45]. The framework in [38] applies
to slowly mixing nonuniformly hyperbolic semiflows that can be modelled as first
return suspensions over full branch Gibbs-Markov maps (uniformly expanding Markov
maps with an at most countable Markov partition satisfying bounded distortion, see
Remark 2.4 for more details). For this class of continuous time systems, [38] shows
that the polynomial decay rates in [34] are sharp.

The paper of [38] also addresses mixing and rates of mixing for infinite measure
nonuniformly expanding semiflows, extending the work of [26, 36] in the discrete time
setting. Again, the results in [38] are restricted to the Gibbs-Markov setting.

In the current paper, we introduce a functional analytic framework that dispenses
with the Gibbs-Markov structure in [38]. The statement and proof of our first main
result, Theorem 2.5 below, is somewhat technical, but the main conclusions are easily
described. The prototypical class of dynamical systems with infinite measure are those
that are intermittent in the sense of Pomeau-Manneville [44]. Previous results [26, 36,
38] deal with such systems for either discrete time or in the continuous time Markov
case. For continuous time nonMarkov examples, the previous theory is insufficient.
The new methods in this paper are able to handle such cases, as exemplified by the
example below.

Example 1.1 Let X = [0, 1] and consider the map f : X → X given by

f(x) = x(1 + ax1/β) mod 1 where β ∈ (1
2
, 1), a > 0. (1.1)

This is an example of an AFN map [51], namely a nonuniformly expanding one-
dimensional map with at most countably (in this case finitely) many branches with
finite images and satisfying Adler’s distortion condition ess sup |f ′′|/|f ′|2 <∞. Up to
scaling, there is a unique absolutely continuous invariant measure µX . The measure
µX is infinite and the density has a singularity at the neutral fixed point 0.

Let τ0 : [0, 1]→ [2,∞) be a continuous roof function and let ft denote the suspen-
sion semiflow on Xτ0 with invariant measure µτ0X = µX × Lebesgue. Note that there
is now a neutral periodic solution of period τ0(0).

If a is a positive integer, then f is Markov and the semiflow ft is covered by the
framework in [38]. Otherwise, we are in the nonMarkov setting and new methods
are required. Roughly speaking, we show that for any ε > 0, almost any sufficiently
regular roof function τ0, and sufficiently regular observables v, w : Xτ0 → R supported
away from the neutral periodic solution, there exist explicit constants d1 > 0 and
d2, d3, . . . ∈ R (typically nonzero), such that∫

v w ◦ ft =
∑

j djt
−j(1−β)

∫
v
∫
w +O(t−( 1

2
−ε)).
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Here, the sum is over those j ≥ 1 with j(1− β) ≤ 1
2
− ε.

A more challenging class of examples is provided by suspensions over unimodal
maps with nonintegrable roof functions. Here there does not exist a uniformly ex-
panding first return Poincaré map, and the functional-analytic setting is considerable
more complicated. Our second main result, Theorem 2.8, allows us to establish rates
of mixing in such examples:

Example 1.2 Let X = [0, 1] and let f : X → X be a C2 unimodal map with
unique non-flat critical point x0 ∈ (0, 1). We suppose that f satisfies Collet-Eckmann
and slow recurrence conditions with a mixing acip µX . (See Section 10 for precise
formulations of these assumptions.)

Consider a roof function τ0 : X → R+ of the form τ0 = g(x)|x −
x0|−1/β where β ∈ (1

2
, 1) and g : [0, 1] → (1,∞) is differentiable. Form

the suspension semiflow ft : Xτ0 → Xτ0 as in Example 1.1. Define κ0 ={
2β(1− β) β ≥ 1

2
(
√

5− 1)
1
2
(
√

5− 1)− β(
√

5− 2) β ≤ 1
2
(
√

5− 1)
. Then we show that for typical choices

of g and all ε > 0, ∫
v w ◦ ft = d1t

−(1−β)
∫
v
∫
w +O(t−(κ0−ε)),

for sufficiently regular observables v, w : Xτ0 → R supported in X × [0, 1], where
d1 > 0 is an explicit constant. (Note that κ0 > 1− β for all β ∈ (1

2
, 1).)

There are two ingredients that make possible the generalisation to semiflows that
do not possess a Gibbs-Markov first return Poincaré map:

(a) In Section 4, we incorporate ideas from [31] (based on [29]) for dealing with
perturbation theory of transfer operators, thereby significantly relaxing the
functional-analytic hypotheses.

(b) In Sections 5 and 7, we incorporate the idea of using a second (reinduced) sus-
pension semiflow model for the study of high Fourier modes. This method was
introduced in [39] for the study of toral extensions of nonMarkov slowly mixing
dynamical systems (with finite and infinite measure). As in [39], reinducing
facilitates the use of Dolgopyat-type arguments.

In Sections 2 to 6, we work with a “superpolynomial” Dolgopyat assumption [20,
33], condition (H4) below, whereas in Section 7 we consider an “exponential”
Dolgopyat assumption (UNI) [19]. The former has the advantage of applying
to a much larger class of dynamical systems (given the current technology),
whereas the latter permits a much larger class of observables v, w.

The focus in this paper is on rates of mixing for infinite measure semiflows. As
pointed out to us by Dima Dolgopyat, Péter Nándori and Doma Szász, mixing itself
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does not require Dolgopyat-type arguments, so reinducing is not required for mixing
without rates. However, ingredient (a) remains useful for studying mixing of infinite
measure semiflows, see [40]. Also, we anticipate that ingredient (b) will be useful
for future work on rates of mixing (correlation decay) for finite measure semiflows,
extending [38] from the Gibbs-Markov setting.

The remainder of the paper is organised as follows. In Section 2 we introduce the
abstract functional analytic setting, and state our main results, Theorems 2.5 and 2.8.
An outline of the proof of Theorem 2.5 is presented in Section 3. Sections 4 and 5
contain proofs of the main lemmas (Lemma 3.2 and 3.3) dealing with small and large
Fourier modes respectively. In Section 6, we prove Theorem 2.8. Section 7 shows how
to enlarge the class of observables v and w under the stronger assumption (UNI) for
the underlying dynamics. In Section 8, we show how the hypotheses for Theorem 2.8
can be verified in examples, such as those in Example 1.2, which can be modelled as
a suspension over an exponential Young tower. In Sections 9 and 10, we apply our
main results to Examples 1.1 and 1.2 respectively.

Notation We use “big O” and � notation interchangeably, writing an = O(bn) or
an � bn if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1.

2 Abstract set-up

Let (Y, dY ) be a bounded metric space with Borel probability measure µ and let
F : Y → Y be an ergodic and mixing measure-preserving transformation. Let τ :
Y → R be a nonintegrable roof function bounded away from zero. For convenience,
we suppose that ess inf τ > 1. Throughout we assume that

µ(y ∈ Y : τ(y) > t) = ct−β +O(tq) where c > 0, β ∈ (1
2
, 1) and q ∈ (1, 2β].

In particular, τ ∈ Lp(Y ) for all p < β.
Define the suspension Y τ = {(y, u) ∈ Y ×R : 0 ≤ u ≤ τ(y)}/ ∼ where (y, τ(y)) ∼

(Fy, 0). The suspension semiflow Ft : Y τ → Y τ is given by Ft(y, u) = (y, u + t),
computed modulo identifications. The measure µτ = µ × Lebesgue is ergodic and
Ft-invariant.

Next, let Z ⊂ Y be a subset of positive measure (possibly Z = Y ). Let σ : Z → Z+

be an inducing time such that F σ(z)(z) ∈ Z for all z ∈ Z, yielding the induced map
G = F σ : Z → Z. Throughout we assume that

µ(z ∈ Z : σ(z) > n) = O(e−dn) for some d > 0.

Remark 2.1 We are specifically interested in the case when σ is not the first return
time. Otherwise, in light of hypothesis (H2) below, we could induce to a first return
semiflow over a Gibbs-Markov map G and proceed as in [38].

4



Define the induced roof function

ϕ = τσ : Z → R+, ϕ(z) =
∑σ(z)−1

j=0 τ(F jz).

Then we can form the suspension semiflow Gt : Zϕ → Zϕ with Zϕ = {(z, u) ∈
Z × R : 0 ≤ u ≤ ϕ(z)}/ ∼ where (z, ϕ(z)) ∼ (Gz, 0), and Gt : Zϕ → Zϕ is given by
Gt(z, u) = (z, u+ t), computed modulo identifications.

2.1 Rates of mixing and higher order asymptotics

In this subsection, we state our first main result.

Assumptions on F and τ Let H = {Re s > 0} and H = {Re s ≥ 0}. Let
R : L1(Y )→ L1(Y ) denote the transfer operator for F : Y → Y , that is

∫
Y
Rv w dµ =∫

Y
v w ◦ F dµ. Define the twisted transfer operators R̂(s) : L1(Y )→ L1(Y ), s ∈ H,

R̂(s)v = R(e−sτv).

We assume that there exists p0 ≥ 1, and for each p ∈ (p0,∞) and ε ∈ (0, β) there
exists a Banach space B(Y ) containing constant functions with norm ‖ ‖B(Y ), and
constants δ > 0, γ0 ∈ (0, 1) and C > 0 such that

(H1) (i) B(Y ) is compactly embedded in Lp(Y ).

(ii) ‖R̂(s)nv‖B(Y ) ≤ C(|v|Lp(Y ) + γn0 ‖v‖B(Y )) for all s ∈ H∩Bδ(0), v ∈ B(Y ), n ≥ 1.

(iii) |R(τβ−ε|v|)|p ≤ C‖v‖B(Y ) for all v ∈ B(Y ).

Remark 2.2 It is clear from the arguments in this paper that the assumption
that (H1) holds for all p and ε can be relaxed. Indeed, there exist p0 ≥ 1 and
ε0 > 0 depending only on β such that (H1) is required to hold only for one value of
p > p0 and one ε ∈ (0, ε0).

Remark 2.3 Condition (H1)(ii) is equivalent to the existence of constants γ1 ∈ (0, 1),
n0 ≥ 1 and C̃ > 0 (with γ1 = γn0

0 ) such that ‖R̂(s)‖B(Y ) ≤ C̃ and ‖R̂(s)n0v‖B(Y ) ≤
C̃|v|Lp(Y ) + γ1‖v‖B(Y ) for all s ∈ H ∩Bδ(0), v ∈ B(Y ).

In particular, if the family s 7→ R̂(s) of operators on B(Y ) is continuous at s = 0,
then (H1)(ii) holds for sufficiently small δ if and only it holds for s = 0.

Assumptions on G and σ Let dZ be a metric on Z. For ` ≥ 1, define τ` =∑`−1
j=0 τ ◦ F j. We assume

(H2) There is an at most countable measurable partition α of Z with µ(a) > 0 for
all a ∈ α such that σ is constant on partition elements. Moreover, there are
constants λ > 1, η ∈ (0, 1], C > 0, such that for each a ∈ α,
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(i) G = F σ restricts to a (measure-theoretic) bijection from a onto Z.

(ii) dZ(Gz,Gz′) ≥ λdZ(z, z′) for all z, z′ ∈ a.

(iii) ξ = dµ|Z
dµ|Z◦G

satisfies | log ξ(z)− log ξ(z′)| ≤ CdZ(Gz,Gz′)η for all z, z′ ∈ a.

(iv) dY (F `z, F `z′) ≤ CdZ(Gz,Gz′) for all z, z′ ∈ a, 0 ≤ ` < σ(a).

(H3) There exists C > 0 such that |τ`(z) − τ`(z
′)| ≤ C(infa ϕ)dZ(Gz,Gz′)η for all

a ∈ α, z, z′ ∈ a, 1 ≤ ` ≤ σ(a).

(H4) Approximate eigenfunction condition [20, 33, 35]. It suffices [35, Proposition 5.2]
that there exist three fixed points zi ∈

⋃
a∈α a, i = 1, 2, 3 for G : Z → Z with

periods pi = ϕ(zi) for the suspension semiflow Gt : Zϕ → Zϕ such that that
(p1 − p3)/(p2 − p3) is Diophantine.1

Remark 2.4 Assumptions (H2)(i)-(iii) mean that G : Z → Z is a Gibbs-Markov
map (standard references for background material on Gibbs-Markov maps are [1,
Chapter 4] and [2]). Let αn denote the partition of Z into n-cylinders, and define ξn =∏n−1

j=0 ξ◦Gj. The transfer operator RG : L1(Z)→ L1(Z) for G satisfies ((RG)nv)(z) =∑
a∈αn ξn(za)v(za) where za is the unique preimage in a of z under Gn, and there exists

C > 0 such that for all z, z′ ∈ a, a ∈ αn, n ≥ 1,

ξn(z) ≤ Cµ(a), |ξn(z)− ξn(z′)| ≤ Cµ(a)dZ(Gnz,Gnz′)η. (2.1)

If F is Gibbs-Markov, then we can take Z = Y , σ ≡ 1, RG = R, and it suffices
to verify (H3) with ` = 1 and (H4), thereby reducing to the hypotheses in [38].
Indeed it is immediate that condition (H2) is redundant and that (H3) reduces to
the case ` = 1. Taking B(Y ) to be a Hölder space, (H1)(i,ii) are standard, see
for instance [38, Proposition 3.5]. Also, |R(τβ−εv)|∞ ≤

∑
a∈α supa ξ supa(τ

β−εv) ≤
C|v|∞

∑
a µ(a) supa τ

β−ε. Assuming (H3) with ` = 1, we have supa τ − infa τ ≤
C infa τ(diamY )η, so supa τ � infa τ and |R(τβ−εv)|∞ � |v|∞

∑
a µ(a) infa τ

β−ε ≤
|v|∞

∫
Y
τβ−ε dµ� ‖v‖B(Y ) verifying (H1)(iii).

Observables Let η ∈ (0, 1]. Define Ỹ = Y × [0, 1]. Given v : Ỹ → R, we define

‖v‖Cη = |v|∞ + |v|Cη , |v|Cη = sup
y,y′∈Y, y 6=y′

sup
u∈[0,1]

|v(y, u)− v(y′, u)|/dY (y, y′)η.

Let Cη(Ỹ ) be the space of observables v : Ỹ → R for which ‖v‖Cη(Ỹ ) <∞.

Next, let B(Y ) be the Banach space in (H1). Define ‖v‖B(Ỹ ) =

supu∈[0,1] ‖v(·, u)‖B(Y ). Then B(Ỹ ) is the space consisting of those v ∈ L1(Ỹ ) with
‖v‖B(Ỹ ) <∞.

1In [38], the corresponding assumption (A.2) is misstated in terms of two periodic orbits, and
should be replaced by the condition here (see [35] for more details). The general approximate
eigenfunction condition in [38, Definition 4.2] is stated correctly.
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If v ∈ B(Ỹ ) ∩ Cη(Ỹ ), then we define |||v||| = ‖v‖B(Ỹ ) + ‖v‖Cη(Ỹ ).

For w : Y × (0, 1) → R, m ≥ 0, set |w|∞,m = maxj=0,...,m |∂juw|∞. We write

w ∈ L∞,m(Ỹ ) if suppw ⊂ Y × (0, 1) and |w|∞,m <∞.

Define

ρv,w(t) =

∫
Y τ
v w ◦ Ft dµτ .

We can now state the first main result.

Theorem 2.5 Suppose that (H1)–(H4) hold. Define

κ =

{
β(1− 2β + q)/q q < 2β
1
2
− ε q = 2β

, where ε > 0 is arbitrarily small.

Then there exist constants d1 = 1
cπ

sin βπ, d2, d3, . . . ∈ R, and there exists m ≥ 2,
such that

ρv,w(t) =
∑

j djt
−j(1−β)

∫
Ỹ
v dµτ

∫
Ỹ
w dµτ +O(|||v||||w|∞,m t−κ),

for all v ∈ B(Ỹ ) ∩ Cη(Ỹ ), w ∈ L∞,m(Ỹ ), t > 0. Here, the sum is over those j ≥ 1
with j(1− β) < κ.

Remark 2.6 As indicated in the introduction, for a more restricted class of dy-
namical systems satisfying a uniform nonintegrability (UNI) condition, we obtain a
stronger result; namely the conclusion of Theorem 2.5 holds for m = 2. See Section 7
for a precise statement.

Remark 2.7 (a) Suppose that µ(ϕ > t) = ct−β + O(t−2β) and that β > 3
4
. If in

addition d2 6= 0 (as is typically the case), then we obtain second order asymptotics
in Theorem 2.5 and the mixing rate is sharp. These results are identical to the ones
obtained in [36, Section 9] in the discrete time context.

We note that the proof of Theorem 2.5 gives explicit (but not particularly nice)
formulas for the constants dj, j ≥ 2 (cf. [36, top of p. 89]).
(b) Mixing rates and higher order asymptotics for the case β = 1 can be also obtained
along the lines of [36, Section 9.2]. We omit this case here.

2.2 Alternative hypotheses for mixing rates

Theorem 2.5 gives explicit, often optimal, rates of mixing as well as high order asymp-
totics. In this subsection, we state an alternative hypothesis in place of (H1) under
which it is still possible to obtain rates of mixing, though the estimates are rougher.

We assume that for every (sufficiently large) p ∈ (1,∞), there exists a Banach
space B(Y ) containing constant functions, with norm ‖ ‖B(Y ), and constants δ > 0,
γ0 ∈ (0, 1) and C > 0 such that
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(A1) (i) B(Y ) is compactly embedded in Lp(Y ).

(ii) ‖R̂(s)nv‖B(Y ) ≤ C(|v|L1(Y ) + γn0 ‖v‖B(Y )) for all s ∈ H∩Bδ(0), v ∈ B(Y ), n ≥ 1.

It follows from these assumptions (see Lemma 6.1 below), that (after possibly
shrinking δ) there is a continuous family of simple eigenvalues λ(s) for R̂(s) : B(Y )→
B(Y ), s ∈ H ∩ Bδ(0), with λ(0) = 1. Let ζ(s) ∈ B(Y ) be the corresponding family
of eigenfunctions normalized so that

∫
Y
ζ(s) dµ = 1. We assume further that there

exists β+ ∈ (β, 1) such that

(A1) (iii)
∣∣ ∫

Y
(e−sτ − 1)(ζ(s)− 1) dµ

∣∣ ≤ C|s|β+ for all s ∈ H ∩Bδ(0).

Theorem 2.8 Suppose that (A1) and (H2)–(H4) hold. Let κ = β(1− 2β + β+)/β+,
d1 = 1

cπ
sin βπ. There exists m ≥ 2, such that for all ε > 0,

ρv,w(t) = d1t
−(1−β)

∫
Ỹ
v dµτ

∫
Ỹ
w dµτ +O(|||v||||w|∞,m t−(κ−ε)),

for all v ∈ B(Ỹ ) ∩ Cη(Ỹ ), w ∈ L∞,m(Ỹ ), t > 0.

Remark 2.9 Note that β(1 − 2β + x)/x = 1 − β when x = β, and hence this
expression is strictly greater than 1− β for x = β+ > β.

If q = 2β and (A1)(iii) holds with β+ ≥ 2β then it follows from the methods
in this paper that we obtain the same error rates and asymptotic expansions as in
Theorem 2.5. If min{q, β+} ∈ (1, 2β), then we obtain essentially the same error rates
(up to an ε) and asymptotic expansions as in Theorem 2.5.

However, the criteria in Section 8 for verifying (A1)(iii) hold only for β+ ∈ (β, 1),
hence our restriction to this range in (A1)(iii) and Theorem 2.8.

2.3 Semiflows on ambient manifolds

In applications, we are often given a semiflow ft : M → M on a finite-dimensional
manifold M , with codimension one cross-section X and first hit time τ0 : X → R+

and Poincaré map f : X → X. Here τ0(x) > 0 is least such that fτ0(x)(x) ∈ X and
f(x) = fτ0(x)(x).

We are particularly interested in the situation where f : X → X possesses a
conservative ergodic absolutely continuous infinite Borel measure µX . In this case,
we fix a subset Y ⊂ X with µX(Y ) ∈ (0,∞). Define the first return time r : Y →
Z+ and the first return map F = f r : Y → Y with ergodic invariant probability
measure µ = (µX |Y )/µX(Y ). The induced roof function τ(y) =

∑r(y)−1
j=0 τ0(f jy) and

suspension semiflow Ft : Y τ → Y τ is as defined above.
Let πM : Y τ → M denote the semiconjugacy between Ft and ft given by

πM(y, u) = fuy. We assume that the suspension semiflow Ft : Y τ → Y τ falls into

the abstract setting above. Let M̃ =
⋃
t∈[0,1] ft(Y ) = πM(Ỹ ). Let v, w : M̃ → R

be observables such that w ∈ L∞,m(M̃) and v ◦ πM ∈ B(Ỹ ) ∩ Cη(Ỹ ) where B(Y )
is the Banach space in (H1). Then it is immediate that Theorem 2.5 applies to∫
M
v w ◦ ft dµX .
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3 Strategy of proof for Theorem 2.5

Recall that Ft : Y τ → Y τ is a suspension semiflow over a mixing map F : Y → Y
with roof function τ : Y → R+, and that Gt : Zϕ → Zϕ is a suspension semiflow
over G = F σ : Z → Z with roof function ϕ = τσ : Z → R+. Recall also that
µτ = µ× Lebesgue is an ergodic Ft-invariant measure on Y τ .

Assumption (H2)(i)-(iii) guarantees that there is a unique ergodic G-invariant
probability measure µZ on Z that is absolutely continuous with respect to µ|Z . We
obtain an ergodic Gt-invariant measure µϕZ = (µZ × Lebesgue)/

∫
Z
σ dµZ on Zϕ.

The projection π : Zϕ → Y τ given by π(z, u) = Fu(z, 0) defines a semiconjugacy
between the suspension semiflows Gt : Zϕ → Zϕ and Ft : Y τ → Y τ . The following
result, proved in Section 5, shows that π is measure-preserving.

Proposition 3.1 π∗µ
ϕ
Z = µτ .

It follows that

ρv,w(t) =

∫
Y τ
v w ◦ Ft dµτ =

∫
Zϕ
v̂ ŵ ◦Gt dµ

ϕ
Z where v̂ = v ◦ π, ŵ = w ◦ π.

Let ρ̂v,w(s) =
∫∞

0
e−stρv,w(t) dt denote the Laplace transform of ρv,w(t). This is

analytic on H. We are particularly interested in the behaviour of ρ̂v,w(s) for s = ib
purely imaginary. As indicated in the introduction (ingredient (b)) the strategy in
this paper is to analyse ρ̂v,w(ib) using the two different expressions for ρv,w(t). For b in
a neighbourhood of 0 (b “small”), we use the representation ρv,w(t) =

∫
Y τ
v w◦Ft dµτ .

For b outside a neighbourhood of 0 (b “large”) we use the representation ρv,w(t) =∫
Zϕ
v̂ ŵ ◦Gt dµ

ϕ
Z .

The resulting estimates are stated in Lemmas 3.2 and 3.3 below, and are proved
in Sections 4 and 5.

In the remainder of this section, we state the key estimates for small and large b
(Lemmas 3.2 and 3.3) and use them to prove Theorem 2.5. Except in the proof of
Lemma 3.6 below, we write ρ(t) and ρ̂(s), suppressing the dependence on v and w.

We assume (H1)–(H4) throughout. Let cβ = i
∫∞

0
e−iσσ−β dσ. Recall that µ(τ >

t) = ct−β +O(t−q) where c > 0, β ∈ (1
2
, 1), q ∈ (1, 2β].

Lemma 3.2 For all ε > 0, there exists C, δ > 0, such that for v ∈ B(Ỹ ), w ∈ L∞(Ỹ ),

(a) |ρ̂(s)| ≤ C|s|−β‖v‖B(Ỹ ) |w|L∞(Ỹ ) for all s ∈ H ∩Bδ(0).

(b) |ρ̂(i(b+h))−ρ̂(ib)| ≤ C{b−2βhβ+b−βhβ−ε}‖v‖B(Ỹ )|w|L∞(Ỹ ) for all 0 < h < b < δ.

(c) There are constants cj ∈ C with c0 = c−1c−1
β such that for all a ∈ (0, δt), ε > 0,∫ a/t

0

eibtρ̂(ib) db =
∑
j

cj

∫ a/t

0

b−((j+1)β−j)eibt db

∫
Ỹ

v dµτ
∫
Ỹ

w dµτ

+O
(
{(a/t)1−2β+q + (a/t)1−ε}‖v‖B(Ỹ ) |w|L∞(Ỹ )

)
,

9



where the sum is over those j ≥ 0 with (j + 1)β − j ≥ 2β − q.

Lemma 3.3 Let δ, ε > 0. There exists C, ω > 0 such that

|ρ̂(i(b+ h))− ρ̂(ib)| ≤ Cbωhβ−ε‖v‖Cη(Ỹ ) |w|L∞(Ỹ ),

for all 0 < h < δ < b, v ∈ Cη(Ỹ ), w ∈ L∞(Ỹ ).

Lemmas 3.2 and 3.3 are proved in Sections 4 and 5 respectively. We now have the
necessary prerequisites for completing the proof of Theorem 2.5.

Proposition 3.4 (cf. [38, Proposition 6.2]) The analytic function ρ̂ on H ex-
tends to a continuous function on H \ {0}, and

ρ(t) =
1

2π

∫ ∞
−∞

eibtρ̂(ib) db =
1

π

∫ ∞
0

Re(eibtρ̂(ib)) db.

Proof This is the same as the proof of [38, Proposition 6.2] with [38, Proposition 6.1]
replaced by Lemma 3.2(a).

Lemma 3.5 (cf. [38, Proposition 6.4]) Let ε > 0. There exists C, δ > 0 such

that for all a ≥ 1, t > (a+ π)/δ, v ∈ B(Ỹ ), w ∈ L∞(Ỹ ),∣∣∣ ∫ δ

a/t

eibtρ̂(ib) db
∣∣∣ ≤ C{t−(1−β)a−(2β−1) + t−(β−ε)}‖v‖B(Ỹ )|w|L∞(Ỹ ).

Proof Throughout, we suppress the factor ‖v‖B(Ỹ )|w|L∞(Ỹ ). Write

I =

∫ δ

a/t

eibtρ̂(ib) db = −
∫ δ+π/t

(a+π)/t

eibtρ̂(i(b− π/t)) db.

Then 2I = I1 + I2 + I3, where

I1 = −
∫ δ+π/t

δ

eibtρ̂(i(b− π/t)) db, I2 =

∫ (a+π)/t

a/t

eibtρ̂(ib) db,

I3 =

∫ δ

(a+π)/t

eibt(ρ̂(ib)− ρ̂(i(b− π/t))) db.

Clearly I1 = O(t−1). By Lemma 3.2(a), |I2| �
∫ (a+π)/t

a/t
b−β db ≤ (π/t)(a/t)−β ≤

t−(1−β)a−β. By Lemma 3.2(b) with h = π/t,

|I3| � t−β
∫ ∞
a/t

b−2β db+ t−(β−ε)
∫ δ

0

b−β db� t−(1−β)a−(2β−1) + t−(β−ε).

This completes the proof.
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Lemma 3.6 (cf. [38, Proposition 6.5]) For any δ > 0, ε ∈ (0, β), there exists

C > 0, m ≥ 2, such that for all t > 0, v ∈ B(Ỹ ) ∩ Cη(Ỹ ), w ∈ L∞,m(Ỹ ),

|
∫∞
δ
eibtρ̂(ib) db| ≤ Ct−(β−ε)‖v‖Cη(Ỹ ) |w|L∞,m(Ỹ ).

Proof Let ω be as in Lemma 3.3. Choose m such that m > ω + 1. By [38,
Proposition 3.7], ρ̂v,w(s) = p̂m(s) + r̂m(s), where p̂m(s) is a linear combination of s−j,
j = 1, . . . ,m, and r̂m(s) = s−mρ̂v,∂mu w(s).

By the proof of [38, Proposition 6.5], |
∫∞
δ
eibtp̂m(ib) db| � t−1|v|L∞(Ỹ )|w|L∞,m(Ỹ ).

By Proposition 3.4, r̂m is well-defined and continuous on H \ {0}. By Lemma 3.3
with h = π/t,

|r̂m(ib)− r̂m(i(b− π/t))| � b−(m−ω)t−(β−ε)‖v‖Cη(Ỹ )|∂
m
u w|L∞(Ỹ ).

Suppressing the factor ‖v‖Cη(Ỹ )|∂mu w|L∞(Ỹ ),

|2
∫∞
δ
eibtr̂m(ib) db| ≤

∫∞
δ
|r̂m(ib)− r̂m(i(b− π/t))| db+

∫ δ+π/t
δ

|r̂m(i(b− π/t))| db
� t−(β−ε) ∫∞

δ
b−(m−ω) db+O(t−1) = O(t−(β−ε)),

where in the last inequality we have used that m > ω + 1.

Proof of Theorem 2.5 We let a = tγ, where γ ∈ (0, 1) is chosen later. A calculation
(see for example [36, Proposition 9.5]) shows that for every j ≥ 0, there exists Cj ∈ C,
with C0 =

∫∞
0
eiσσ−β dσ = iΓ(1− β)e−iβπ/2, such that∫ a/t

0

b−((j+1)β−j)eibtdb− Cj t−(j+1)(1−β) � t−(j+1)(1−β)a−((j+1)β−j)

= t−1(a/t)j−(j+1)β � t−(1−β)a−β.

By Lemma 3.2(c), writing c′j = cjCj
∫
Ỹ
v dµτ

∫
Ỹ
w dµτ ,∫ a/t

0

eibtρ̂(ib) db−
∑
j≥0

c′jt
−(j+1)(1−β) � t−(1−β)a−β + (a/t)1−r,

where r =

{
2β − q q < 2β

ε q = 2β
, and c0 = c−1c−1

β , cβ = i
∫∞

0
e−iσσ−β dσ = Γ(1−β)eiβπ/2.

By Lemmas 3.5 and 3.6,∫ ∞
0

eibtρ̂(ib) db−
∑
j≥0

c′jt
−(j+1)(1−β) � (a/t)1−r + t−(1−β)a−(2β−1) + t−(β−ε)

= t−(1−r)β/(2β−r) + t−(β−ε) � t−κ,

where we have taken a = t(β−r)/(2β−r) and κ is as in the statement of the theorem.
The result now follows from Proposition 3.4 with

d1 = 1
π

Re(c0C0) = 1
cπ

Re(ie−iβπ) = 1
cπ

sin βπ,

as desired.
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4 Estimates for small b: proof of Lemma 3.2

Throughout this section, we suppose that hypothesis (H1) holds and that µ(τ > t) =
ct−β where c > 0, β ∈ (1

2
, 1) and q ∈ (1, 2β].

4.1 Representation of ρ̂v,w(ib) for small b

Transfer operators Recall that R : L1(Y )→ L1(Y ) denotes the transfer operator
for F : Y → Y . Also, for s ∈ H, we have the families of operators R̂(s)v = R(e−sτv)
on L1(Y ), Note that R̂ is analytic on H and well-defined on H.

Given observables v, w : Ỹ → R, we define vs, ws : Y → C for s ∈ C, setting

vs(y) =

∫ 1

0

esuv(y, u) du, ws(y) =

∫ 1

0

e−suw(y, u) du.

Also, define

Ĵ(s) = −
∫
Y

∫ 1

0

∫ u

0

esuv(y, u) e−stw(y, t) dt du dµ.

Define T̂ (s) = (I − R̂(s))−1 for s ∈ H. Following [43],

ρ̂v,w(s) = Ĵ(s) +
∫
Y
T̂ (s)vsws dµ, (4.1)

for all v ∈ L1(Y ), w ∈ L∞(Y ), s ∈ H. (See Appendix A for a proof.)

Proposition 4.1 ‖vs‖B(Y ) ≤ e|Re s|‖v‖B(Ỹ ), for all s ∈ C, and ‖vi(b+h) − vib‖B(Y ) ≤
h‖v‖B(Ỹ ) for all b, h ≥ 0.

The same result holds with B changed to Lp, 1 ≤ p ≤ ∞, and/or v changed to w.

Proof We have ‖vs‖B(Y ) ≤
∫ 1

0
eRe s u‖v(·, u)‖B(Y ) du ≤ e|Re s|‖v‖B(Ỹ ), and ‖vi(b+h) −

vib‖B(Y ) ≤
∫ 1

0
|ei(b+h)u − eibu|‖v(·, u)‖B(Y ) du ≤ h

∫ 1

0
u‖v‖B(Ỹ ) du ≤ h‖v‖B(Ỹ ).

Proposition 4.2 (a) |Ĵ(s)| ≤ e|Re s||v|L1(Ỹ )|w|L∞(Ỹ ) for all s ∈ C, v ∈ L1(Ỹ ),

w ∈ L∞(Ỹ ), and

(b) |Ĵ((i(b+h))−Ĵ(ib)| ≤ h|v|L1(Ỹ )|w|L∞(Ỹ ) for all b, h > 0, v ∈ L1(Ỹ ), w ∈ L∞(Ỹ ).

Proof

|Ĵ(s)| ≤
∫
Y

∫ 1

0

∫ 1

0

eRe s (u−t)|v(y, u)||w(y, t)| dt du dµ

≤ e|Re s||w|∞
∫
Y

∫ 1

0

|v(y, u)| du dµ = e|Re s||v|1|w|∞.
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Similarly,

|Ĵ(i(b+ h))− Ĵ(ib)| ≤ h

∫
Y

∫ 1

0

∫ 1

0

|u− t||v(y, u)||w(y, t)| dt du dµ ≤ h|v|1|w|∞.

4.2 Estimates for T̂ (s)

Viewing R̂(s), s ∈ H, as a family of operators from B(Y ) to L∞(Y ), we first study
its continuity properties using (H1). We begin with ε, δ small and p large as in (H1).
During the subsection, these values change finitely many times. Also C > 0 is a
constant whose value changes finitely many times.

Lemma 4.3 ‖R̂(s1)− R̂(s2)‖B(Y )→Lp(Y ) ≤ C |s1 − s2|β−ε for all s1, s2 ∈ H.

Proof Recall that R̂(s)v = R(e−sτv). Since R is a positive operator,

|(R̂(s1)− R̂(s2))v| ≤ R(|e−s1τ − e−s2τ ||v|) ≤ 2|s1 − s2|β−εR(τβ−ε|v|).

By (H1)(iii), |(R̂(s1)− R̂(s2))v|p ≤ 2|s1−s2|β−ε|R(τβ−ε|v|)|p � |s1−s2|β−ε‖v‖B(Y ).

Lemma 4.4 There exists a continuous family λ(s), s ∈ H ∩ Bδ(0), of simple eigen-
values for R̂(s) : B(Y ) → B(Y ) with λ(0) = 1. The corresponding family of spectral
projections P (s) are bounded linear operators on B(Y ) for all s ∈ H ∩ Bδ(0) and
sups∈H∩Bδ(0) ‖P (s)‖B(Y ) <∞. Moreover,

‖P (s1)− P (s2)‖B(Y )→Lp(Y ) ≤ C|s1 − s2|β−ε for all s1, s2 ∈ H ∩Bδ(0).

Proof We verify the hypotheses (2)–(5) of [29, Corollary 1], thereby obtaining the
required estimates for the family P (s). Simplicity of the family of eigenvalues λ(s) is
a consequence of F being mixing.

Hypothesis (2) is immediate since ‖R̂(s)‖Lp(Y ) ≤ 1 for all s ∈ H ∩ Bδ(0) and
assumption (H1)(ii) corresponds to hypothesis (3). Hypothesis (4) follows from
(H1)(i),(ii), and hypothesis (5) follows from Lemma 4.3.

Let ζ(s) denote the corresponding family of eigenfunctions normalized so that∫
Y
ζ(s) dµ = 1. In particular, ζ(0) ≡ 1 and P (0)v =

∫
Y
v dµ for all v ∈ B(Y ). Also,

define the complementary projections Q(s) = I − P (s). It is immediate that ζ(s)
and Q(s) inherit the estimate obtained for P (s). In particular |ζ(s1)− ζ(s2)|Lp(Y ) �
|s1 − s2|β−ε.
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Following [25] (a simplification of [2]),

λ(s) =

∫
Y

λ(s)ζ(s) dµ =

∫
Y

R̂(s)ζ(s) dµ (4.2)

=

∫
Y

R̂(s)ζ(0) dµ+

∫
Y

(R̂(s)− R̂(0))(ζ(s)− ζ(0)) dµ =

∫
Y

e−sτ dµ+ χ(s),

where χ(s) =
∫
Y

(e−sτ − 1)(ζ(s)− 1) dµ.

Proposition 4.5 (a) |χ(s)| ≤ C|s|2β−ε for all s ∈ H ∩Bδ(0),

(b) |χ(i(b+ h))− χ(ib)| ≤ Cbβhβ−ε for all 0 < h < b < δ.

Proof Choose r > 1 such that (β − ε)r < β with conjugate exponent r′. Then
τ (β−ε)r ∈ L1 and it follows from Hölder’s inequality that

|χ(s)| ≤ 2|s|β−ε|τβ−ε(ζ(s)− 1)|1 ≤ 2|s|β−ε|τ (β−ε)|r|ζ(s)− 1|r′ � |s|2(β−ε),

yielding part (a). Here we used that |ζ(s)− 1|p = O(|s|β−ε) for p as large as desired.
Similarly,

|χ(i(b+ h))− χ(ib)| ≤ |(ei(b+h)τ − 1)(ζ(i(b+ h))− ζ(ib))|1 + |(eihτ − 1)(ζ(ib)− 1)|1
� (b+ h)β−εhβ−ε + hβ−εbβ−ε � bβ−εhβ−ε ≤ bβhβ−2ε,

proving part (b).

Recall that cβ = i
∫∞

0
e−iσσ−β dσ.

Lemma 4.6 (cf. [38, Lemma 5.5]) For s ∈ H ∩Bδ(0),

1− λ(s) ∼ cβs
β as s→ 0, T̂ (s) = (1− λ(s))−1P (0) + E(s),

where ‖E(s)‖B(Y )→L1(Y ) ≤ C|s|−ε.

Proof For similar arguments we refer to, for instance, [2, 31, 36, 37, 38].
By [37, Lemma 2.4], 1 −

∫
Y
e−sτ dµ ∼ cβs

β as s → 0. It follows from (4.2) and
Proposition 4.5 that 1− λ(s) ∼ cβs

β. Next,

T̂ (s) = (1− λ(s))−1P (s) + (I − R̂(s))−1Q(s) = (1− λ(s))−1P (0) + E(s),

where
E(s) = (1− λ(s))−1(P (s)− P (0)) + (I − R̂(s))−1Q(s).

By (H1), ‖(I− R̂(s))−1Q(s)‖B(Y ) = O(1). By Lemma 4.4, ‖P (s)−P (0)‖B(Y )→L1(Y ) =
O(|s|β−ε). Hence ‖E(s)‖B(Y )→L1(Y ) = O(|s|−ε).
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Lemma 4.7 (cf. [31, Proposition 3.7]) For all 0 < h < b < δ,

‖T̂ (i(b+ h))− T̂ (ib)‖B(Y )→L1(Y ) ≤ C(b−2βhβ + b−βhβ−ε).

Proof First, |
∫
Y

(e−i(b+h)τ−e−ibτ )dµ| � hβ by the argument used in the proof of [22,
Lemma 3.3.2]. By (4.2) and Proposition 4.5(b),

|λ(i(b+ h))− λ(ib)| � hβ + bβhβ−ε. (4.3)

Next recall as in Lemma 4.6 that T̂ (ib) = A1(b) + A2(b) where

A1(b) = (1− λ(ib))−1P (ib), A2(b) = (I − R̂(ib))−1Q(ib).

Using (4.3) and Lemmas 4.4 and 4.6,

‖A1(b+ h)− A1(b)‖B(Y )→L1(Y ) � b−2βhβ + b−βhβ−ε.

The argument in [31, Proposition 3.8] shows that ‖A2(b + h) − A2(b)‖B(Y )→L1(Y ) �
hβ−ε, completing the proof.

Lemma 4.8 There are constants cj ∈ C with c0 = c−1c−1
β such that

T̂ (ib) =
∑

j cjb
−((j+1)β−j)P (0) + E(ib) for all b ∈ [0, δ),

where ‖E(ib)‖B(Y )→L1(Y ) ≤ C(b−(2β−q) + b−ε).

Proof Let G(t) = µ(τ ≤ t), so 1−G(t) = ct−β + H(t) where H(t) = O((t + 1)−q).
Then proceeding as in [2, Section 5] and [36, Lemma 3.2],∫

Y

(eibτ − 1) dµ = −
∫ ∞

0

(eibt − 1) d(1−G(t)) = ib

∫ ∞
0

eibt(1−G(t)) dt

= icb

∫ ∞
0

eibtt−β dt+ ib

∫ ∞
0

H(t) dt+ ib

∫ ∞
0

(eibt − 1)H(t) dt

= icbβ
∫ ∞

0

eiσσ−β dσ + ib

∫ ∞
0

H(t) dt+O(bq).

Hence

1−
∫
Y
e−ibτ dµ = ccβb

β + e1b+O(bq), (4.4)

where cβ = i
∫∞

0
e−iσσ−β dσ and e1 = i

∫∞
0
H(t) dt. By (4.2) and Proposition 4.5(a),

1− λ(ib) = 1−
∫
Y
e−ibτ dµ+O(b2β−ε)

= ccβb
β(1 + e2b

1−β +O(bq−β) +O(bβ−ε)),

15



where e2 = c−1c−1
β e1. Thus,

(1− λ(ib))−1 =
∑

jcjb
−((j+1)β−j) +O(b−(2β−q)) +O(b−ε),

for constants c0, c1, . . . ∈ C with c0 = c−1c−1
β . Now apply Lemma 4.6.

We can now complete the proof of Lemma 3.2.

Proof of Lemma 3.2 (a) By (4.1), Propositions 4.1 and 4.2, and Lemma 4.6,

|ρ̂(s)| ≤ |Ĵ(s)|+ ‖T̂ (s)‖B(Y )→L1(Y )‖vs‖B(Y )|ws|L∞(Y ) � |s|−β‖v‖B(Ỹ )|w|L∞(Ỹ ).

(b) By (4.1), Propositions 4.1 and 4.2, and Lemmas 4.6 and 4.7,

|ρ̂(i(b+ h))− ρ̂(ib)| ≤ |Ĵ(i(b+ h))− Ĵ(ib)|
+ ‖T̂ (i(b+ h))− T̂ (ib)‖B(Y )→L1(Y )‖vi(b+h)‖B(Y )|wi(b+h)|L∞(Y )

+ ‖T̂ (ib)‖B(Y )→L1(Y )‖vi(b+h) − vib‖B(Y )|wi(b+h)|L∞(Y )

+ ‖T̂ (ib)‖B(Y )→L1(Y )‖vib‖B(Y )|wi(b+h) − wib|L∞(Y )

�
{
h+ b−2βhβ + b−βhβ−ε + b−βh}‖v‖B(Ỹ )|w|L∞(Ỹ ),

yielding the required estimate.

(c) By Propositions 4.1 and 4.2, and Lemma 4.6, |Ĵ(ib)| � |v|L1(Ỹ )|w|L∞(Ỹ ) and

|T̂ (ib)vibwib − T̂ (ib)v0w0|L1(Y ) ≤ |T̂ (ib)(vib − v0)wib|L1(Y ) + |T̂ (ib)v0 (wib − w0)|L1(Y )

≤ ‖T̂ (ib)‖B(Y )→L1(Y ){‖vib − v0‖B(Y )|wib|L∞(Y ) + ‖v0‖B(Y )|wib − w0|L∞(Y )}
� b1−β‖v‖B(Ỹ )|w|L∞(Ỹ ).

Substituting into (4.1), we obtain

ρ̂(ib) =
∫
Y
T̂ (ib)v0w0 dµ+O(‖v‖B(Ỹ )|w|L∞(Ỹ )).

Let r = max{2β − q, ε} ∈ [0, 1). By Lemma 4.8,∫
Y

T̂ (ib)v0w0 dµ =
∑
j

cjb
−((j+1)β−j)

∫
Y

P (0)v0w0 dµ+

∫
Y

E(ib)v0w0 dµ,

where
∫
Y
|E(ib)v0w0| dµ � b−r‖v‖B(Ỹ )|w|L∞(Ỹ ). Also,

∫
Y
P (0)v0w0 dµ =∫

Y τ
v dµτ

∫
Y τ
w dµτ . Hence

ρ̂v,w(ib) =
∑
j

cjb
−((j+1)β−j)

∫
Ỹ

v dµ̃

∫
Ỹ

w dµ̃+O(b−r‖v‖B(Ỹ )|w|L∞(Ỹ )),

and the result follows.
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5 Estimates for large b: proof of Lemma 3.3

Throughout this section, we suppose that assumptions (H2)–(H4) hold.

5.1 Lifting from Y τ to Zϕ

Recall that Ft : Y τ → Y τ is the suspension semiflow over F with roof function τ and
Gt : Zϕ → Zϕ is the suspension semiflow over G = F σ with roof function ϕ = τσ.
Here, G : Z → Z is a Gibbs-Markov map with partition α. Also π : Zϕ → Y τ is the
semiconjugacy π(z, u) = Fu(z, 0).

We defined ergodic Ft- and Gt-invariant measures µτ = µ× Lebesgue on Y τ and
µϕZ = (µZ ×Lebesgue)/

∫
Z
σ dµZ on Zϕ. As promised, we now verify that π∗µ

ϕ
Z = µτ .

Proof of Proposition 3.1 The measures µZ and µ are related by the formula∫
Y

h dµ = σ̄−1

∫
Z

σ(z)−1∑
`=0

h(F `z) dµZ(z) for all h ∈ L1(Y ),

where σ̄ =
∫
Z
σ dµZ . For g ∈ L1(Y τ ),

σ̄

∫
Y τ
g dµτ = σ̄

∫
Y

∫ τ(y)

0

g(y, u) du dµ =

∫
Z

σ(z)−1∑
`=0

∫ τ(F `z)

0

g(F `z, u) du dµZ(z)

=

∫
Z

σ(z)−1∑
`=0

∫ τ`+1(z)

τ`(z)

g(F `z, u− τ`(z)) du dµZ(z)

=

∫
Z

σ(z)−1∑
`=0

∫ τ`+1(z)

τ`(z)

g(Fu(z, 0)) du dµZ(z) =

∫
Z

∫ ϕ(z)

0

g(Fu(z, 0)) du dµZ(z)

=

∫
Z

∫ ϕ(z)

0

g ◦ π(z, u) du dµZ(z) = σ̄

∫
Zϕ
g ◦ π dµϕZ = σ̄

∫
Y ϕ
g dπ∗µ

ϕ
Z .

Hence π∗µ
ϕ
Z = µτ as required.

Define

Ŷ = π−1(Ỹ ) =
⋃
z∈Z

σ(z)−1⋃
`=0

{z} × [τ`(z), τ`(z) + 1].

We note that ∫ ϕ(z)

0
1Ŷ (z, u) du = σ(a) for all a ∈ α, z ∈ a. (5.1)

Observables v : Y τ → R supported in Ỹ lift to observables v̂ = v ◦ π : Zϕ → R
supported in Ŷ . Define v̂(b) : Z → C, b ∈ R,

v̂(b)(z) =
∫ ϕ(z)

0
eibuv̂(z, u) du =

∫ ϕ(z)

0
eibu(1Ŷ v̂)(z, u) du.
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In this paper, we require estimates for v̂ and v̂′, but it is no extra work to estimate
v̂(k) for all k ≥ 0; this will be used elsewhere.

Proposition 5.1 Let k ≥ 0, ε > 0. There exists C > 0 such that

|v̂(k)(b)(z)| ≤ Cσ(a)(infa ϕ
k)|v|∞,

|v̂(k)(b)(z)− v̂(k)(b)(z′)| ≤ C(bε + 1)σ(a)(infa ϕ
k+ε)‖v‖CηdZ(Gz,Gz′)εη,

for all v ∈ Cη(Ỹ ), a ∈ α, z, z′ ∈ α, b > 0.

Proof By (5.1), |v̂(k)(b)(z)| ≤ |v|∞
∫ ϕ(z)

0
uk1Ŷ (z, u) du ≤ σ(a)(supa ϕ

k)|v|∞ �
σ(a)(infa ϕ

k)|v|∞. Next,

v̂(k)(b)(z) =

σ(a)−1∑
`=0

∫ τ`(z)+1

τ`(z)

(iu)keibuv̂(z, u) du

= ik
σ(a)−1∑
`=0

∫ 1

0

(u+ τ`(z))keibueibτ`(z)v̂(z, u+ τ`(z)) du = ik
σ(a)−1∑
`=0

I`(z),

where I`(z) =
∫ 1

0
(u+ τ`(z))keibueibτ`(z)v(F `z, u) du. By (H2)(iv) and (H3),

|I`(z)− I`(z′)| ≤ k|τ`(z)− τ`(z′)|(supa ϕ)k−1|v|∞
+ 2bε|τ`(z)− τ`(z′)|ε(supa ϕ+ 1)k|v|∞ + (supa ϕ+ 1)k|v|ηdY (F `z, F `z′)η

� (bε + 1)(infa ϕ
k+ε)‖v‖Cη(Ỹ )dZ(Gz,Gz′)εη,

for 0 ≤ ` ≤ σ(a)− 1. The estimate for |v̂(k)(b)(z)− v̂(k)(b)(z′)| follows.

For v : Z̃ → C, η ∈ (0, 1), define

‖v‖Cη(Z̃) = |v|∞ + |v|η, |v|η = sup
z,z′∈Z, z 6=z′

sup
u∈[0,1]

|v(z, u)− v(z′, u)|/dZ(z, z′)η.

Define Cη(Z̃) to be the space of observables v : Z̃ → C such that ‖v‖Cη(Z̃) <∞.

5.2 Representation of ρ̂v,w(ib) for large b

In this subsection we obtain an expression for ρ̂v,w(ib) using transfer operators related
to the induced suspension semiflow Gt : Zϕ → Zϕ over G = F σ with roof function
ϕ = τσ.

Let LGt : L1(Zϕ)→ L1(Zϕ) denote the family of transfer operators corresponding
to the suspension semiflow Gt : Zϕ → Zϕ. Define L̂G(s) =

∫∞
0
LGt e

−st dt and note

that for v ∈ L1(Ỹ ) and w ∈ L∞(Ỹ ),

ρ̂v,w(s) =

∫
Zϕ

1Ŷ L̂
G(s)(1Ŷ v̂) ŵ dµϕZ where v̂ = v ◦ π, ŵ = w ◦ π. (5.2)
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Let Z̃ = Z × [0, 1]. Define TGt = 1Z̃L
G
t 1Z̃ and let T̂G(s) be the corresponding

Laplace transform. Condition (H4) is required for the next result.

Proposition 5.2 Let ε ∈ (0, 1), δ > 0. Then there exists C > 0, ω > 0 such that

‖T̂G(ib)‖Cεη(Z̃)→L∞(Z̃) ≤ Cbω, ‖T̂G(i(b+ h))− T̂G(ib)‖Cεη(Z̃)→L∞(Z̃) ≤ Cbωhβ−ε,

for all 0 < h < δ < b.

Proof Since G is Gibbs-Markov, the result with L∞(Z̃) replaced by L1(Z̃) is covered
by [38, Corollary 5.10]. Using (2.1), an additional but standard calculation (for the
term Û in [38, Lemma 5.8(b)]) specialised to the Gibbs-Markov setting yields the L∞

estimates.

In a continuous-time analogue of [23], we define the operators

At : L1(Z̃)→ L1(Zϕ), Bt : L1(Zϕ)→ L1(Z̃), Et : L1(Zϕ)→ L1(Zϕ),

where
At = 1ZtL

G
t 1Z̃ , Bt = 1Z̃L

G
t 1∆t , Et = LGt ((1− ξ(t))v).

Here

Zt = {(z, u) ∈ Zϕ : t ≤ u ≤ t+ 1, u > 1},
∆t = {(z, u) ∈ Zϕ : ϕ(z)− t ≤ u ≤ ϕ(z)− t+ 1},

correspond to certain rows and diagonals in the suspension Zϕ and

ξ(t) =

∫ t

0

∫ x

0

1∆y 1Zt−x ◦Gt dy dx ∈ [0, 1].

Given Banach spaces B1, B2, B3 and families of operators αt : B2 → B3, βt :
B1 → B2, t ≥ 0, we define the convolution (α ? β)t : B1 → B3, t ≥ 0, by (α ? β)t =∫ t

0
αt−xβx dx.

Proposition 5.3 LGt = (A ? TG ? B)t + Et, for all t ≥ 0.

Proof Let v ∈ L1(Zϕ), w ∈ L∞(Zϕ). For all 0 ≤ y ≤ x ≤ t,∫
Zϕ
At−xT

G
x−yByv w dµ

ϕ
Z =

∫
Zϕ

1Zt−xL
G
t−x(1Z̃L

G
x−y(1Z̃L

G
y (1∆yv)))w dµϕZ

=

∫
Zϕ

1Zt−xL
G
t−x(L

G
x−y(L

G
y (1∆yv)))w dµϕZ =

∫
Zϕ

1Zt−xL
G
t (1∆yv)w dµϕZ

=

∫
Zϕ

1∆yv 1Zt−x ◦Gtw ◦Gt dµ
ϕ
Z .
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Hence∫
Zϕ

(A ? TG ? B)tv w dµ
ϕ
Z =

∫
Zϕ

∫ t

0

∫ x

0

At−xT
G
x−yByv w dy dx dµ

ϕ
Z

=

∫
Zϕ
ξ(t)v w ◦Gt dµ

ϕ
Z =

∫
Zϕ
LGt (ξ(t))v w dµϕZ =

∫
Zϕ
LGt v w dµ

ϕ
Z −

∫
Zϕ
Etv w dµ

ϕ
Z

as required.

Let Â, B̂, Ê be the Laplace transforms of At, Bt, Et. By Proposition 5.3,

L̂G(s) = Â(s)T̂G(s)B̂(s) + Ê(s). (5.3)

Let B̂(ib)1Ŷ π
∗ : L1(Ỹ ) → L1(Z̃) denote the operator (B̂(ib)1Ŷ π

∗)(v) =

B̂(ib)(1Ŷ v̂) where v̂ = π∗v = v ◦π : Ŷ → R. Similarly, define 1Ŷ Ê(ib)1Ŷ π
∗ : L1(Ỹ )→

L1(Ŷ ). The following result is proved in Subsections 5.3 and 5.4.

Lemma 5.4 Let ε ∈ (0, 1), δ > 0. Then there exists C > 0 such that

(a)
∫∞
t0
‖1ŶAt‖L∞(Z̃)→L1(Ŷ ) dt ≤ Ct0

−(β−ε),

(b)
∫∞
t0
‖1ŶEt1Ŷ π∗‖L∞(Ỹ )→L1(Ŷ ) dt ≤ Ct

−(β−ε)
0 ,

(c) ‖B̂(ib)1Ŷ π
∗‖Cη(Ỹ )→Cεη(Z̃) ≤ Cbε, and

‖B̂(i(b+ h))1Ŷ π
∗ − B̂(ib)1Ŷ π

∗‖Cη(Ỹ )→Cεη(Z̃) ≤ Cbεhβ−ε,

for all t0 > 0, 0 < h < δ < b.

Proof of Lemma 3.3 It follows from Lemma 5.4 that in the appropriate norms,

‖1Ŷ Â(ib)‖ ≤ C, ‖1Ŷ Â(i(b+ h))− 1Ŷ Â(ib)‖ ≤ Chβ−ε,

‖1Ŷ Ê(ib)1Ŷ π
∗‖ ≤ C, ‖1Ŷ Ê(i(b+ h))1Ŷ π

∗ − 1Ŷ Ê(ib)1Ŷ π
∗‖ ≤ Chβ−ε,

‖B̂(ib)1Ŷ π
∗‖ ≤ Cbε, ‖B̂(i(b+ h))1Ŷ π

∗ − B̂(ib)1Ŷ π
∗‖ ≤ Cbεhβ−2ε.

Combining these with the estimates for T̂G in Proposition 5.2 and substituting into
equation (5.3), there exist (new) constants C, ω > 0 such that

‖1Ŷ L̂
G(i(b+ h))1Ŷ π

∗ − 1Ŷ L̂
G(ib))1Ŷ π

∗‖Cη(Ỹ )→L1(Ŷ ) ≤ Cbωhβ−2ε.

By (5.2),

|ρ̂v,w(i(b+ h))− ρ̂v,w(ib)| ≤ |ŵ|∞||1Ŷ L̂
G(i(b+ h))1Ŷ π

∗v − 1Ŷ L̂
G(ib))1Ŷ π

∗v|L1(Ŷ )

≤ Cbωhβ−2ε‖v‖Cη(Ỹ )|w|∞,

for all v ∈ Cη(Ỹ ), w ∈ L∞(Ỹ ).
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5.3 Estimates for 1ŶAt, 1ŶEt1Ŷ π
∗: proof of Lemma 5.4(a,b)

Proof of Lemma 5.4(a) Let t ≥ 0. Then

|1ŶAtv|1 ≤
∫
Zϕ

1Ŷ 1ZtL
G
t (1Z̃ |v|) dµ

ϕ
Z ≤ |v|∞

∫
Z̃

1Ŷ ◦Gt 1Zt ◦Gt dµ
ϕ
Z .

Let (z, u) ∈ Z̃. If Gt(z, u) ∈ Zt, then u+ t < ϕ(z) and Gt(z, u) = (z, u+ t). Hence

‖1ŶAt‖ ≤
∫
Z̃

1Ŷ (z, u+ t) 1{u+t∈[0,ϕ(z)]} dµ
ϕ
Z .

Now,∫ ∞
t0

1Ŷ (z, u+ t)1{u+t∈[0,ϕ(z)]} dt ≤ 1{ϕ(z)>t0}

∫ ϕ(z)

0

1Ŷ (z, t) dt ≤ 1{ϕ(z)>t0}σ(z),

by (5.1), and so
∫∞
t0
‖1ŶAt‖ dt ≤

∫
Z

1{ϕ>t0}σ dµZ .

Choose ε′ > 0 and p, q > 1 with p−1 + q−1 = 1 such that (β − ε′)/p = β − ε. Since
µ is G-invariant, by Hölder’s inequality,∫ ∞

t0

‖1ŶAt‖ dt ≤ µ(ϕ > t0)1/p|σ|q � t
−(β−ε)
0 ,

completing the proof.

Proof of Lemma 5.4(b) It follows from the definitions that

|1ŶEt(1Ŷ π
∗v)|1 ≤

∫
Zϕ

1ŶL
G
t (|(1− ξ(t))1Ŷ v̂|) dµ

ϕ
Z ≤ |v|∞

∫
Zϕ

1Ŷ ◦Gt |1− ξ(t)|1Ŷ dµ
ϕ
Z .

It is convenient to break this expression into terms with the same lap number.
Define ϕk =

∑k−1
j=0 ϕ ◦ Gj. Given (z, u) ∈ Zϕ and t > 0, we define the lap number

Nt = Nt(z, u) to be the integer Nt = k such that

u+ t ∈ [ϕk(z), ϕk+1(z)).

Define Et,kv = Et(1{Nt=k}v). Then ‖1ŶEt1Ŷ π∗‖ =
∑∞

k=0 ‖1ŶEt,k1Ŷ π∗‖ where

‖1ŶEt,k1Ŷ π
∗‖ ≤

∫
Zϕ

1{Nt=k}1Ŷ ◦Gt(1− ξ(t))1Ŷ dµ
ϕ
Z .

The desired result is immediate from the following two claims.

(i) For each k ≥ 0, there is a constant Ck > 0 such that
∫∞
t0
‖1ŶEt,k1Ŷ π∗‖ dt ≤

Ckt
−(β−ε)
0 .
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(ii) Et,k = 0 for all k ≥ 2.

First, we prove claim (i). When Nt = k, we have

Gt(z, u) = (Gkz, u+ t− ϕk(z)) and u+ t− ϕk(z) ∈ [0, ϕ(Gkz)].

Hence,∫ ∞
t0

‖1ŶEt,k1Ŷ π
∗‖ dt ≤

∫
Zϕ

∫ ∞
t0

1{u+t∈[ϕk(z),ϕk+1(z)]}1Ŷ (Gkz, u+ t− ϕk(z)) dt 1Ŷ dµ
ϕ
Z

≤
∫
Zϕ

1{ϕk+1>t0}1Ŷ

∫ ϕ(Gkz)

0

1Ŷ (Gkz, t) dt dµϕZ =

∫
Zϕ

1{ϕk+1>t0}1Ŷ σ(Gkz) dµϕZ

=

∫
Z

1{ϕk+1>t0}σ ◦G
k

∫ ϕ(z)

0

1Ŷ (z, u) du dµZ =

∫
Z

1{ϕk+1>t0}σ ◦G
kσ dµZ ,

where we have used (5.1) twice. Using Hölder’s inequality as in the proof of
Lemma 5.4(a) completes the proof of claim (i).

To prove claim (ii), we show that ξ(t) ≡ 1 when k ≥ 2. The constraints (z, u) ∈
∆y, Gt(z, u) ∈ Zt−x can be restated as

ϕ(z)− u < y < ϕ(z)− u+ 1, ϕk(z)− u < x < ϕk(z)− u+ 1 < t.

These conditions alone imply that x, y > 0, x < t. Since k ≥ 2, we have also that
y < ϕ(z)− u+ 1 ≤ ϕk(z)− u < x. Hence

ξ(t) =

∫ t

0

∫ x

0

1∆y1Zt−x ◦Gt dy dx =

∫ ϕk(z)−u+1

ϕk(z)−u

∫ ϕ(z)−u+1

ϕ(z)−u
1 dy dx = 1,

as required.

5.4 Estimates for B̂(s)1Ŷ π
∗: proof of Lemma 5.4(c)

For s ∈ C, define the operator D̂(s) : L1(Zϕ)→ L1(Z̃),

(D̂(s)v)(z, u) = e−s(ϕ(z)+u)
∫ ϕ(z)

0
estv(z, t) dt, (z, u) ∈ Z̃.

Define G̃ : Z̃ → Z̃, by G̃(z, u) = (Gz, u), and let R̃ : L1(Z̃) → L1(Z̃) denote the
corresponding transfer operator.

Proposition 5.5 B̂(s) = R̃ D̂(s).
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Proof Let v ∈ L1(Zϕ), w ∈ L∞(Z̃). We can regard w as a function on Zϕ supported

on Z̃. Since Gt(z, u) = (Gz, u+ t− ϕ(z)) for (z, u) ∈ ∆t,∫
Z̃

Btv w dµ
ϕ
Z =

∫
Zϕ
LGt (1∆tv)w dµϕZ =

∫
Z

∫ ϕ(z)

0

1{0≤u−ϕ(z)+t≤1}(v w ◦Gt)(z, u) du dµZ

=

∫
Z

∫ t

t−ϕ(z)

1{0≤u≤1}v(z, u+ ϕ(z)− t)w ◦ G̃(z, u) du dµZ

=

∫
Z

∫ 1

0

1{t−ϕ(z)≤u≤t}v(z, u+ ϕ(z)− t)w ◦ G̃(z, u) du dµZ .

Hence ∫
Z̃

B̂(s)v w dµϕZ =

∫
Z̃

∫ ϕ(z)+u

u

e−stv(z, u+ ϕ(z)− t) dtw ◦ G̃(z, u) dµϕZ

=

∫
Z̃

e−s(ϕ(z)+u)

∫ ϕ(z)

0

estv(z, t) dtw ◦ G̃(z, u) dµϕZ

=

∫
Z̃

D̂(s)v w ◦ G̃ dµϕZ =

∫
Z̃

R̃ D̂(s)v w dµϕZ ,

as required.

For b ∈ R, define f(b) : L1(Ỹ )→ L1(Z̃),

f(b)v = D̂(ib)(1Ŷ π
∗v) = D̂(ib)v̂, v̂ = v ◦ π.

Proposition 5.6 For any ε ∈ (0, β], δ > 0, there exists C > 0 such that

(a) |(f(b)v)(z, u)| ≤ σ(a)|v|∞,

(b) |(f(b)v)(z, u)− (f(b)v)(z′, u))| ≤ Cbεσ(a)(infa ϕ
ε)‖v‖Cη(Ỹ )dZ(Gz,Gz′)εη,

(c) |{f(b+ h)v − f(b)v}(z, u)| ≤ Chβ−εσ(a)(infa ϕ
β−ε)|v|∞,

(d) |{f(b+ h)v − f(b)v}(z, u)− {f(b+ h)v − f(b)v}(z′, u)|
≤ Cbεhβ−2εσ(a)(infa ϕ

β−ε)‖v‖Cη(Ỹ )dZ(Gz,Gz′)εη,

for all a ∈ α, z, z′ ∈ a, u ∈ [0, 1], 0 < h < δ < b, and v ∈ Cη(Ỹ ).

Proof We establish the inequalities (a) and (b) together with

(e) |(f ′(b)v)(z, u)| ≤ Cσ(a)(infa ϕ)|v|∞.

(f) |(f ′(b)v)(z, u)− (f ′(b)v)(z′, u)| ≤ Cbεσ(a)(infa ϕ
1+ε)‖v‖Cη(Ỹ )dZ(Gz,Gz′)εη.
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By the mean value theorem, it follows from (e) that |{f(b1)v − f(b2)v}(z, u)| �
σ(a)(infa ϕ)|v|∞|b1 − b2|. Combining this with (a), we obtain

|{f(b1)v − f(b2)v}(z, u)| � σ(a)|v|∞min{1, (infa ϕ)|b1 − b2|}
≤ σ(a)|v|∞(infa ϕ

β−ε)|b1 − b2|β−ε,

proving (c). Similarly, using (b) and (f),

|{f(b1)v − f(b2)v}(z, u)− {f(b1)v − f(b2)v}(z′, u)|
� (|b1|ε + |b2|ε)σ(a)(infa ϕ

ε)‖v‖Cη(Ỹ )dZ(Gz,Gz′)εη min{1, (infa ϕ)|b1 − b2|}
≤ (|b1|ε + |b2|ε)σ(a)(infa ϕ

β−ε)‖v‖Cη(Ỹ )dZ(Gz,Gz′)εη|b1 − b2|β−2ε,

proving (d).
It remains to carry out the estimates (a), (b), (e), (f). In the notation of Propo-

sition 5.1,

(f(b)v)(z, u) = e−ib(ϕ(z)+u)

∫ ϕ(z)

0

eibt(1Ŷ v̂)(z, t) dt = e−ib(ϕ(z)+u)v̂(b)(z).

(a) By Proposition 5.1, |(f(b)v)(z, u)| = |v̂(b)(z)| ≤ σ(a)|v|∞.

(e) Write

(f ′(b)v)(z, u) = −i(ϕ(z) + u)(f(b)v)(z, u) + e−ib(ϕ(z)+u)v̂′(b)(z). (5.4)

By part (a) and Proposition 5.1,

|(f ′(b)v)(z, u)| ≤ (supa ϕ+ 1)|(f(b)v)(z, u)|+ |v̂′(b)(z)| � σ(a)(infa ϕ)|v|∞.

(b) Write (f(b)v)(z, u)− (f(b)v)(z′, u) = I1 + I2 where

I1 = e−iu(e−ibϕ(z) − e−ibϕ(z′))v̂(b)(z), I2 = e−iue−ibϕ(z′)(v̂(b)(z)− v̂(b)(z′)).

By (H3) and Proposition 5.1,

|I1| ≤ 2bε|ϕ(z)− ϕ(z′)|ε|v|∞σ(a)� bε|v|∞σ(a)(infa ϕ
ε)dZ(Gz,Gz′)εη,

|I2| = |v̂(b)(z)− v̂(b)(z′)| � bεσ(a)(infa ϕ
ε)‖v‖Cη(Ỹ )dZ(Gz,Gz′)εη.

(f) Using (5.4), estimating (f ′(b)v)(z, u) − (f ′(b)v)(z′, u) reduces to estimating the
four terms

(ϕ(z)− ϕ(z′))(f(b)v)(z, u), (ϕ(z′) + u)((f(b)v)(z, u)− (f(b)v)(z′, u)),

(e−ibϕ(z) − e−ibϕ(z′))v̂′(b)(z), e−ibϕ(z′)(v̂′(b)(z)− v̂′(b)(z′)).

By (H3) and Proposition 5.1, we obtain the same estimates as in part (b) with an
extra factor of infa ϕ.

24



Proposition 5.7
∫
Z
σ ϕβ−ε dµZ <∞ for any ε > 0.

Proof Let δ > 0, q ≥ 1. Then

µZ(σ ϕβ−ε > t) ≤ µZ(σ ϕβ−ε > t, σ ≤ q log t) + µZ(σ > q log t) = g(t) +O(t−cq),

where

g(t) = µZ(σ ϕβ−ε > t, σ ≤ q log t) ≤ µZ(ϕ > ct(1−δ)/(β−ε), σ ≤ q log t)

≤ µZ(τ[q log t] > ct(1−δ)/(β−ε)) ≤
[q log t]−1∑
j=0

µZ(τ ◦ F j > c′t(1−2δ)/(β−ε))

= [q log t]µZ(τ > c′t(1−2δ)/(β−ε))� t−(β−δ)(1−2δ)/(β−ε).

(Here, c, c′ > 0 are constants.) Choosing q sufficiently large and δ sufficiently small,
we obtain that µZ(ϕβ−εσ > t) = O(t−r) for some r > 1 and the result follows.

Proof of Lemma 5.4(c) Using the formula for R̃ in Remark 2.4, we obtain

(B̂(s)v)(z, u) =
∑

a∈α ξ(za)(D̂(s)v)(za, u). In particular, for v ∈ Cη(Ỹ ), v̂ = v ◦ π,

(B̂(ib)1Ŷ π
∗v)(z, u) = (B̂(ib)v̂)(z, u) =

∑
aξ(za)(f(b)v)(za, u).

By (2.1) and Propositions 5.6(a,b) and 5.7, for all z, z′ ∈ Z̃, u ∈ [0, 1],

|(B̂(ib)v̂)(z, u)| ≤
∑

aξ(za)|(f(b)v)(za, u)| � |v|∞
∑

aµZ(a)σ(a)� |v|∞,

and

|(B̂(ib)v̂)(z, u)− (B̂(ib)v̂)(z′, u)|
≤
∑

a|ξ(za)− ξ(z
′
a)||(f(b)v)(za, u)|+

∑
aξ(z

′
a)|(f(b)v)(za, u)− (f(b)v)(z′a, u)|

�
∑

aµZ(a)dZ(Gza, Gz
′
a)
ησ(a)|v|∞ +

∑
aµZ(a)bεσ(a)(infa ϕ

ε)‖v‖CηdZ(Gza, Gz
′
a)
εη

� bε‖v‖CηdZ(z, z′)εη.

Hence ‖B̂(ib)v̂‖Cεη(Z̃) � bε‖v‖Cη(Ỹ ).

Similarly, using (2.1) and Propositions 5.6(e,f) and 5.7,

|{B̂(i(b+ h))v̂ − B̂(ib)v̂}(z, u)| ≤
∑

aξ(za)|{f(b+ h)v − f(b)v}(za, u)|
�
∑

aµZ(a)hβ−εσ(a)(infa ϕ
β−ε)|v|∞ � hβ−ε|v|∞,

and

|{B̂(i(b+ h))v̂ − B̂(ib)v̂}(z, u)− {B̂(i(b+ h))v̂ − B̂(ib)v̂}(z′, u)|
≤
∑

a|ξ(za)− ξ(z
′
a)||{f(b+ h)v − f(b)v}(z, u)|

+
∑

aξ(z
′
a)|{f(b+ h)v − f(b)v}(z, u)− {f(b+ h)v − f(b)v}(z′, u)|

�
∑

aµZ(a)dZ(Gza, Gz
′
a)
ηhβ−εσ(a)(infa ϕ

β−ε)|v|∞
+
∑

aµZ(a)bεhβ−2εσ(a)(infa ϕ
β−ε)‖v‖CηdZ(Gza, Gz

′
a)
εη

� bεhβ−2ε‖v‖CηdZ(z, z)εη.
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Hence ‖B̂(i(b+ h))v̂ − B̂(ib)v̂‖Cεη(Z̃) � bεhβ−2ε‖v‖Cη(Ỹ ).

6 Proof of Theorem 2.8

In this section, we consider the proof of Theorem 2.8. The arguments are similar to
those in Section 4, with hypothesis (H1) replaced by hypothesis (A1). Our conventions
regarding ε, δ, p, C are the same as in Section 4.2. Let c0 = c−1c−1

β where cβ =

i
∫∞

0
e−iσσ−β dσ.

Lemma 4.3 is replaced by:

Lemma 6.1 ‖R̂(s1)− R̂(s2)‖B(Y )→L1(Y ) ≤ C |s1 − s2|β−ε for all s1, s2 ∈ H,

Proof Since R : L1(Y )→ L1(Y ) is a contraction,

|(R̂(s1)− R̂(s2))v|1 ≤ |(e−s1τ − e−s2τ )v|1 ≤ 2|s1 − s2|β−ε|τβ−εv|1.

Choose r > 1 such that (β − ε)r < β with conjugate exponent r′. By Hölder’s
inequality and (A1)(i), |τβ−εv|1 ≤ |τβ−ε|r|v|r′ � ‖v‖B(Y ) completing the proof.

Next, we proceed as in Lemma 4.4, using Lemma 6.1 and hypotheses (A1)(i),(ii).
This leads to continuous families of eigenvalues λ(s), projections P (s) and eigenfunc-
tions ζ(s) with the same properties as before except that Lp(Y ) is replaced by L1(Y ).
The main difference is Proposition 4.5 which is replaced by the following.

Proposition 6.2 (a) |χ(s)| ≤ C|s|β+ for all s ∈ H ∩Bδ(0),

(b) |χ(i(b+ h))− χ(ib)| ≤ Chβ−ε for all 0 < h < b < δ.

Proof Part (a) is immediate from (A1)(iii). Since ‖ζ(s)‖B(Y ) is bounded, it follows
from Hölder’s inequality as in the proof of Lemma 6.1 that

|χ(i(b+ h))− χ(ib)| ≤ |(ei(b+h)τ − 1)(ζ(i(b+ h))− ζ(ib))|1 + |(eihτ − 1)(ζ(ib)− 1)|1
≤ 2|ζ(i(b+ h))− ζ(ib)|1 + 2hβ−ε|τβ−ε|r|(ζ(ib)− 1)|r′ � hβ−ε.

Hence we obtain part (b).

The statement and proof of Lemma 4.6 goes through unchanged since β+ > β.
Lemma 4.7 becomes:

Lemma 6.3 ‖T̂ (i(b+ h))− T̂ (ib)‖B(Y )→L1(Y ) ≤ Cb−2βhβ−ε for all 0 < h < b < δ.

Proof By Proposition 6.2(b), in place of (4.3) we have |λ(i(b+ h))− λ(ib)| � hβ−ε.
Now proceed as before.

Lemma 4.8 becomes:
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Lemma 6.4 T̂ (ib) = c0b
−βP (0) +E(ib) for all b ∈ [0, δ), where ‖E(ib)‖B(Y )→L1(Y ) ≤

Cb−(2β−β+).

Proof By (4.2), (4.4) and Proposition 6.2(a),

1− λ(ib) = ccβb
β(1 +O(bβ+−β)), (1− λ(ib))−1 = c0b

−β +O(b−(2β−β+)).

The rest of the proof is unchanged.

Lemma 3.2 is replaced by the following result.

Lemma 6.5 Let v ∈ B(Ỹ ), w ∈ L∞(Ỹ ).

(a) |ρ̂(s)| ≤ C|s|−β‖v‖B(Ỹ ) |w|L∞(Ỹ ) for all s ∈ H ∩Bδ(0).

(b) |ρ̂(i(b+ h))− ρ̂(ib)| ≤ Cb−2βhβ−ε‖v‖B(Ỹ )|w|L∞(Ỹ ) for all 0 < h < b < δ.

(c) For all a ∈ (0, δt),
∫ a/t

0
eibtρ̂(ib) db = c0

∫ a/t
0

b−βeibt db
∫
Ỹ
v dµτ

∫
Ỹ
w dµτ +

O
(
(a/t)1−2β+β+‖v‖B(Ỹ ) |w|L∞(Ỹ )

)
.

Proof The proofs proceed exactly as before.

Lemma 6.6 For all a ≥ 1, t > (a+ π)/δ, v ∈ B(Ỹ ), w ∈ L∞(Ỹ ),∣∣∣ ∫ δ

a/t

eibtρ̂(ib) db
∣∣∣ ≤ Ct−(1−β−ε)a−(2β−1)‖v‖B(Ỹ )|w|L∞(Ỹ ).

Proof We use the same decomposition 2I = I1+I2+I3 as in the proof of Lemma 3.5.
The estimates for I1 and I2 are unchanged. By Lemma 6.5(b) with h = π/t,

|I3| � t−(β−ε)
∫ ∞
a/t

b−2β db� t−(1−β−ε)a−(2β−1),

as required.

Proof of Theorem 2.8 We argue as in the proof of Theorem 2.5. By Lem-
mas 6.5(c), 6.6 and 3.6 (which is unchanged),∫ ∞

0

eibtρ̂(ib) db− c′0t−(1−β) � (a/t)1−2β+β+ + t−(1−β−ε)a−(2β−1).

The result follows with a = t(β+−β)/β+ .
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7 Piecewise C1+η semiflows satisfying UNI

As mentioned in the introduction, exponential decay of correlations has been verified
for a very restricted class of continuous time dynamical systems, whereas superpoly-
nomial decay of correlations is better understood. Hence, we have chosen in this
paper to focus on the dynamical systems that are amenable to superpolynomial-type
techniques (modulo the nonintegrability of the roof functions τ and ϕ). The price we
pay for this extra generality is the smoothness requirements on the observable w.

In this section, we consider the more restrictive class of dynamical systems for
which exponential-type techniques are available. Consequently, the smoothness as-
sumptions on w are relaxed.

We continue to assume the tail conditions on τ : Y → R+, ϕ : Z → R+ and
σ : Z → Z+ as well as assumption (H1). As usual we require that inf ϕ ≥ 2.

Assumption (H2) is replaced by the following: Fix η ∈ (0, 1]. Let {(cm, dm)} be a
countable partition mod 0 of Z = [0, 1] and suppose that G : Z → Z is C1+η on each
subinterval (cm, dm) and extends to a homeomorphism from [cm, dm] onto Z. (In [4],
the map is denoted by F and is C1+α but it is convenient here to use η instead of
α.) Suppose that σ is constant on partition elements of Z and that the roof function
ϕ : Z → R+ is C1 on partition elements.

Let Gn denote the set of inverse branches for Gn and write G = G1. We assume
that there are constants C > 0, ρ0 ∈ (0, 1) such that

• |g′|∞ ≤ Cρn0 for all g ∈ Gn,

• | log |g′||η ≤ C for all g ∈ G,

• |(ϕ ◦ g)′|∞ ≤ C for all g ∈ G.

These correspond to conditions (i)–(iii) from [4]. In place of (H3), we require that

• |τ` ◦ g|η ≤ C|ϕ ◦ g|∞ for all ` ≤ σ ◦ g and all g ∈ G.

Finally, (H4) is replaced by the uniform nonintegrability condition

(UNI) For all n0 ≥ 1, there exists n ≥ n0 and g1, g2 ∈ Gn such that ψ = ϕn◦g1−ϕn◦g2

satisfies inf |ψ′| > 0. (Here, ϕn =
∑n−1

j=0 ϕ ◦Gj.)

The main result in this section is:

Theorem 7.1 Under the above condition, Theorems 2.5 holds with m = 2.

Remark 7.2 The assumption that G is a one-dimensional map can be relaxed some-
what. We have used the set-up in [4] which extends results of [9] from C2 maps to
C1+α maps. In both references, the map G is one-dimensional. Higher-dimensional
C2 maps are treated in [6] but under very restrictive smoothness assumptions on the
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boundaries of the partition elements, and this also extends to C1+α maps [16]. Hence
Theorem 7.1 can be shown to hold for semiflows over C1+α piecewise expanding maps
in arbitrary dimensions, subject to this restriction on the partition elements.

The proof of Theorem 7.1 occupies the remainder of the section. First, we define
the family of equivalent norms on Cη(Z):

‖v‖b = max{|v|∞, |v|η/(1 + |b|η)}, b ∈ R.

If L is an operator on Cη(Z), we write ‖L‖b = supv∈Cη , ‖v‖b=1 ‖Lv‖b.
Let RG denote the transfer operator corresponding to G : Z → Z, and define

R̂G(s)v = RG(e−sϕv).
The are various families of transfer operators Ps, Ls and Qs in [4]. We are only

interested in the range s ∈ H. Moreover, we are particularly interested in s = ib
imaginary. It is easily checked that Lib = Qib = R̂G(ib). In what follows, we use the
notation R̂G(ib). Also, the operator Ps in [4] satisfies Ps = f0R̂

G(ib)f−1
0 where f0,

f−1
0 ∈ Cη.

The estimates in [4] are carried out for Re s ≥ −ε; it is easy to check that the
estimates for s ∈ H hold even though condition (iv) from [4] is not assumed.

Proposition 7.3 There exists C > 0 such that ‖R̂G(ib)n‖b ≤ C for all b ∈ R, n ≥ 1.

Proof See [4, Corollary 2.8].

Lemma 7.4 There exist constants A,D > 0 and γ ∈ (0, 1) such that

‖R̂G(ib)n‖b ≤ γn for all n ≥ A ln b, b ≥ D.

Proof This is contained in the second paragraph of the proof of [4, Theorem 2.16].

Corollary 7.5 For any δ > 0, there exists C > 0 such that

‖(I − R̂G(ib))−1‖b ≤ C ln b for all b > δ.

Proof Let A,D be as in Lemma 7.4, increased if necessary so that A lnD ≥ 1.
First suppose that b ≥ D. Let m = m(b) = dA ln be ≥ 1. By Lemma 7.4,

‖R̂G(ib)m‖b ≤ γm ≤ γ and so ‖(I − R̂G(ib)m)−1‖b ≤ (1− γ)−1.
Next we use the identity (I − R̂G)−1 = (I + R̂G + · · · + (R̂G)m−1)(I − (R̂G)m)−1

and Proposition 7.3 to conclude that ‖(I − R̂G(ib))−1‖b ≤ mC(1− γ)−1 � ln b.
To deal with the range δ < b < D, we note by the proof of [4, Lemma 2.22]

that 1 6∈ spec R̂G(ib) for any b > 0. Hence by continuity of the family b 7→ R̂G(ib)
and compactness of [δ,D] it follows that there is a constant C > 0 such that ‖(I −
R̂G(ib))−1‖b ≤ C for all b ∈ [δ,D].
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Proposition 7.6 Let ε ∈ (0, β). There exists C > 0 such that ‖R̂G(i(b + h)) −
R̂G(ib)‖b ≤ Chβ−ε for all b, h > 0.

Proof The unnormalized transfer operator has the form

P (ib) =
∑

g∈G Ag(b), Ag(b)v = e−ibϕ◦g|g′|v ◦ g.

Now,
|Ag(b+ h)v − Ag(b)v|∞ ≤ hβ−ε|ϕβ−ε ◦ g|∞|g′|∞|v|∞.

It follows from the assumptions on G and ϕ, together with Proposition 5.7, that∑
g∈G |ϕβ−ε ◦ g|∞|g′|∞ �

∫
Z
ϕβ−ε dµZ <∞ and so |P (i(b+ h))− P (ib)|∞ � hβ−ε.

Next, the proof of [4, Proposition 2.5] shows that |Ag(b)v|η � |g′|∞{(1+|b|η)|v|∞+
|v|η}. Also, A′g(b) = −i(ϕ ◦ g)Ag(b), so

|A′g(b)v|η ≤ |ϕ ◦ g|∞|Ag(b)v|η + |ϕ ◦ g|η|Ag(b)v|∞
� |ϕ ◦ g|∞|g′|∞{(1 + |b|η)|v|∞ + |v|η}.

Therefore,

|(Ag(b+ h)v)− (Ag(b)v)|η � |g′|∞{(1 + |b|η)|v|∞ + |v|η}min{1, |ϕ ◦ g|∞h}
≤ |g′|∞{(1 + |b|η)|v|∞ + |v|η}|ϕ ◦ g|β−ε∞ hβ−ε,

and so
|P (i(b+ h))v − P (ib)v|η � {(1 + |b|η)|v|∞ + |v|η}hβ−ε.

It follows from these estimates that ‖P (i(b + h)) − P (ib)‖b ≤ Chβ−ε. Finally,
R̂G(ib) = f−1

0 P (ib)f0 where f0, f
−1
0 ∈ Cη and the result follows.

Proposition 7.7 ‖B̂(ib)1Ŷ π
∗‖Cη(Ỹ )→Cεη(Z̃) ≤ Cbε and

‖B̂(i(b+ h))1Ŷ π
∗ − B̂(ib)1Ŷ π

∗‖Cη(Ỹ )→Cεη(Z̃) ≤ Cbεhβ−2ε,

for all t0 > 0, 0 < h < δ < b.

Proof This is almost identical to the argument in Section 5. The only difference
is that in the final arguments in the proof of Lemma 5.4(c), we have g′ = p ◦ g and
the estimate |ξ(z) − ξ(z′)| � µ(a)dZ(Gz,Gz′) for a ∈ α, z, z′ ∈ α is replaced by
|g′z − g′z′| � |g′z||z − z′|η which holds for all z, z′ ∈ Z.

Proof of Theorem 7.1 It follows from Corollary 7.5 and Proposition 7.6 (with η
replaced by εη) that

‖(I − R̂G(i(b+ h)))−1 − (I − R̂G(ib))−1‖b � (ln b)2hβ−ε.
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Since |v|∞ ≤ ‖v‖b ≤ ‖v‖η,

‖(I − R̂G(i(b+ h)))−1 − (I − R̂G(ib))−1‖Cεη(Z)→L∞(Z) � (ln b)2hβ−ε.

Similarly, ‖(I − R̂G(i(b+ h)))−1‖Cεη(Z)→L∞(Z) � ln b. As in [38], we obtain that

‖T̂G(ib)‖Cεη(Z̃)→L∞(Z̃) � ln b, ‖T̂G(i(b+ h))− T̂G(ib)‖Cεη(Z̃)→L∞(Z̃) � (ln b)2hβ−ε.

We now proceed exactly as in Section 5, with Lemma 5.4(c) replaced by Proposi-
tion 7.7, to conclude that Lemma 3.3 holds with ω ∈ (0, 1). (In fact, ω can be taken
arbitrarily small.) Hence in the proof of Lemma 3.6, we can take m = 2.

8 Semiflows modelled by Young towers

Let ft : M →M be a semiflow on a bounded finite-dimensional Riemannian manifold
(M,dM), with codimension one cross-section X, first hit time τ0 : X → R+, and
Poincaré map f : X → X. Here τ0(x) > 0 is least such that fτ0(x)(x) ∈ X and
f(x) = fτ0(x)(x). In contrast to Section 2.3, we now suppose that f : X → X is a
finite measure system with τ0 nonintegrable. Since there is a natural semiconjugacy
from Xτ0 to M , we focus attention on the semiflow ft : Xτ0 → Xτ0 .

Now suppose that f : X → X is modelled by a (one-sided) Young tower with
exponential tails [49, 50]. That is, there is a subset Z ⊂ X and a return time
σ : Z → Z+ (not necessarily the first return time) such that G = fσ : Z → Z is a
full branch Gibbs-Markov map. Denote the corresponding partition and ergodic G-
invariant probability measure by α and µZ respectively. We require that σ : Z → Z+

is constant on partition elements and as usual that σ has exponential tails: µZ(σ >
n) = O(e−dn) for some d > 0.

For z, z′ ∈ Z, we let s(z, z′) denote the least n ≥ 0 such that Gnz and Gnz′ lie in
distinct elements of α. For θ ∈ (0, 1) fixed, we define the symbolic metric dθ(z, z

′) =
θs(z,z

′) on Z. Our final assumption on the map f is that there exists θ0 ∈ (0, 1) and
C > 0 such that dM(f `z, f `z′) ≤ Cdθ0(z, z

′) for all z, z′ ∈ Z, 0 ≤ ` < σ(z)− 1.
Define the Young tower map F : Y → Y ,

Y = {(z, `) ∈ Z × Z : 0 ≤ ` ≤ σ(z)− 1}, F (z, `) =

{
(z, `+ 1) ` ≤ σ(z)− 2

(Gz, 0) ` = σ(z)− 1
,

with ergodic F -invariant probability measure µ = (µZ × counting)/σ̄ where σ̄ =∫
Z
σ dµZ . Let πY : Y → X be the semiconjugacy πY (z, `) = f `z. Then µX = (πY )∗µ

is an ergodic f -invariant probability measure on X.
Let τ = τ0◦πY : Y → R+ be the lifted roof function. Note that µ(τ > t) = µX(τ0 >

t) and that τ` =
∑`−1

j=0 τ0 ◦ f j =
∑`−1

j=0 τ ◦ F j on Z. Hence various assumptions are
expressed equally well in terms of τ0 and τ . Define ϕ = τσ : Z → R+. As usual, we
assume ess inf τ0 > 1 and the tail condition
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µX(τ0 > t) = ct−β +O(tq) where c > 0, β ∈ (1
2
, 1) and q ∈ (1, 2β].

Also, we assume (H3) for some θ0 ∈ (0, 1), namely,

There exists C > 0 such that |τ`(z)− τ`(z′)| ≤ C(infa ϕ)dθ0(z, z
′) for all a ∈ α,

z, z′ ∈ a, ` ≤ σ(a).

Hypothesis (H2) is automatically satisfied in the above set-up, and as usual hypothesis
(H4) is satisfied in typical examples.

It remains to address hypothesis (H1) or alternatively (A1). In fact, hypothesis
(H1)(iii) is easily seen to fail for Young towers (for reasonable examples of roof func-
tions τ0) and also Lemma 4.3 fails. This is due to the lack of smoothing properties of
the transfer operator R during excursions up the tower. Hence in the remainder of
this section we discuss hypothesis (A1).

8.1 Hypotheses (A1)(i),(ii) for Young towers

Young [49] introduced a function space for Young towers with exponential tails and
proved that this function space satisfies hypothesis (A1)(i) and (ii) with s = 0. Bálint
& Gouëzel [10] enlarged this function space and proved (A1)(i) and (ii) for s ∈
H. However, they require a strengthened form of (H3) which is not satisfied in
Example 1.2. In general it is easy to see that R̂(s) is an unbounded operator for the
function spaces in [10, 49] for all s 6= 0. Hence, we define a new function space as
follows.

Let Y` = {(z, j) ∈ Y : j = `} denote the `’th level of the tower. Fix ε > 0 (to be

specified later), β′ ∈ (0, β) and θ ∈ [θβ
′

0 , 1). For v : Y → R, define the weighted L∞

norm ‖v‖w,∞ = sup`≥0 e
−`ε|1Y`v|∞ as in [49]. Also, set

‖v‖θ = sup
`≥0

e−ε` sup
a∈α

σ(a)>`

sup
z,z′∈a
z 6=z′

ϕ(z)−β
′ |v(z, `)− v(z′, `)|/dθ(z, z′).

Let B(Y ) denote the Banach space of functions v : Y → R with ‖v‖B(Y ) =
max{‖v‖w,∞, ‖v‖θ} <∞.

Remark 8.1 Following [10], we have used the separation time in terms of iterates of
G as in [50] rather than iterates of F as in [49]. This increases the class of observables
and more importantly the class of allowable roof functions τ0. If β′ = 0, then B(Y )
is precisely the function space defined in [10].

Since B(Y ) is larger than the spaces in [10, 49, 50], it is standard that Hölder
observables v : X → R lift to observables v ◦ πY ∈ B(Y ). Hence from now on we can
work with Y and τ instead of X and τ0.

Lemma 8.2 Let β′ ∈ (0, β), θ ∈ [θβ
′

0 , 1). For ε > 0 sufficiently small, conditions
(A1)(i),(ii) hold for B(Y ).
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Proof If τ satisfies the strengthened (H3) condition |τ`(z)− τ`(z′)| ≤ Cdθ0(z, z
′) for

a ∈ α, z, z′ ∈ a, ` ≤ σ(a), then this is proved in [10, Propositions 3.5 and 3.7]. The
general case is proved in Appendix B.

8.2 A reformulation of (A1)(iii) for Young towers

In this subsection, we obtain a useful reformulation of (A1)(iii) in the special case of
Young towers, using ideas in [10, Section 3]. The results only make use of the norm
‖ ‖w,∞ so the extra factor of ϕβ

′
in the definition of ‖ ‖B(Y ) does not affect these

arguments. Define

ψ : Y → R+, ψ(z, `) = τ`(z) =
∑`−1

j=0 τ(F jz).

Lemma 8.3 Let β− ∈ (0, β), p ∈ [1,∞). There exists δ > 0 such that |ζ(s)−e−sψ|p =
O(|s|β−) for all s ∈ H ∩Bδ(0).

Proof We sketch the main steps following [10]. For notational convenience, write
λs = λ(s) and ζs = ζ(s). First, [10, Lemmas 3.12, 3.13 and 3.14] go through un-
changed except that t, wt and ∆0 are now s, ζs and Y0, and error rates |t| are replaced
by |s|β− . As in [10, Lemma 3.15], we obtain that |1Y0(ζs − cs)|∞ = O(|s|β−) where
cs ∈ R and cs → 1. Since |ζs − 1|1 = O(|s|β−) (see the discussion after Lemma 6.1)
it follows easily from the proof of [10, Lemma 3.15] that cs = 1 +O(|s|β−) and hence
that

|1Y0(ζs − 1)|∞ = O(|s|β−). (8.1)

Now R̂(s)ζs = λsζs, so for (z, `) ∈ Y \ Y0,

ζs(z, `) = λ−1
s

(
R(e−sτζs)

)
(z, `) = λ−1

s e−sτ(z,`−1)ζs(z, `− 1).

Inductively, ζs(z, `) = λ−`s e
−sψ(z,`)ζs(z, 0) for all (z, `) ∈ Y . Hence

|ζs(z, `)− e−sψ(z,`)| ≤ |λ−`s ζs(z, 0)− 1| ≤ |λ−`s − 1||ζs(z, 0)|+ |ζs(z, 0)− 1|.

Now |ζs(z, 0)| ≤ ‖ζs‖w,∞ which is bounded and |ζs(z, 0) − 1| = O(|s|β−) by (8.1).
Hence

|ζs(z, `)− e−sψ(z,`)| � |λ−`s − 1|+ |s|β− � |λ`s − 1|+ |s|β−

�
(
(1 +O(|s|β−))` − 1

)
+ |s|β− � |s|β−

{
`(1 +O(|s|β−))` + 1

}
.

For |s| < δ sufficiently small, it now follows from exponential tails that

|ζs − e−sψ|pp ≤ |s|pβ−
∑

`≥0 µ(Y`)
{
`p(1 +O(|s|β−))p` + 1

}
� |s|pβ− ,

as required.
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Corollary 8.4 Let β+ ∈ (β, 2β). Then (A1)(iii) is equivalent to the condition∣∣ ∫
Y

(e−sτ − 1)(e−sψ − 1) dµ
∣∣ = O(|s|β+) for s ∈ H ∩Bδ(0). (8.2)

Proof Let β− ∈ (1
2
β+, β). By Hölder’s inequality and Lemma 8.3, for all r, r′ > 1

with r−1 + r′−1 = 1,

|(e−sτ − 1)(ζ(s)− e−sψ)|1 ≤ 2|s|β−|τβ−|r|ζ(s)− e−sψ|r′ � |s|2β−|τβ−|r ≤ |s|β+ |τβ− |r.

Taking r sufficiently close to 1, we can ensure that |τβ−|r <∞.

8.3 Sufficient conditions for (A1)(iii)

In this subsection, we give sufficient conditions for (8.2) and hence (A1)(iii).
Define I(s) = (e−sτ − 1)(e−sψ − 1). By Corollary 8.4, it suffices to show that

|I(s)|1 = O(|s|β+) for some β+ > β. To achieve this, we consider decompositions of
the form

Y = {τ < ψ1−q} ∪ {σ ≥ d0 logψ} ∪ {σ < d0 logψ and τ ≥ ψ1−q},

for appropriate choices of q and d0.
Recall that ψ ∈ Lp for all p < β. Hence, for any q ∈ (0, 1),

|1{τ<ψ1−q}I(s)|1 ≤ 4|s|β+ |1{τ<ψ1−q}τ
β+ |1 ≤ 4|s|β+|ψβ+(1−q)|1 � |s|β+ , (8.3)

for all β+ ∈ (β, 1] with β+ < β/(1− q). Also, since µZ(σ > n) = O(e−dn),

|1{σ≥d0 logψ}I(s)|1 ≤ 4|s||1{σ≥d0 logψ}ψ|1 ≤ 4|s||ed
−1
0 σ|1 � |s|, (8.4)

for all d0 > d−1.
It remains to estimate |1{σ<d0 logψ}1{τ≥ψ1−q}I(s)|1. Define ψ∗(z, `) =

max0≤j≤`−1 τ(F jz). Then ψ∗(z, `) ≤ ψ(z, `) ≤ σ(z)ψ∗(z, `).

Proposition 8.5 There exists M1,M2 > 0 with the property that if σ < d0 logψ then
σ < M1 logψ∗ +M2.

Proof Since σ < d0 logψ, it follows that σ < d0 log(σψ∗) = d0 log σ + d0 logψ∗.
Hence σ(1− d0(log σ)/σ) < d0 logψ∗ and the result follows.

From now on, we fix M1,M2 > 0 sufficiently large as in Proposition 8.5. Also we
fix d∗ > 0 such that M1 log n+M2 ≤ d∗ log n for all n ≥ 2. For q > 0, define

Xq(n) =
{
x ∈ X : [τ0(x)] = n and τ0(f jx) ≥ n1−q for some 1 ≤ j < d∗ log n

}
.

Proposition 8.6 Assume that the density dµX/dµZ is bounded below on Z. Suppose
that there exists β′ ∈ (β, 1], q ∈ (0, 1), such that

∑∞
n=1 n

β′µX(Xq(n)) < ∞. Then
(A1)(iii) holds for any β+ ∈ (β,min{β′, β/(1− q)}).
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Proof For n ≥ 2, define

Y (n) =
{

(z, `) ∈ Y : [ψ∗(z, `)] = n and σ(z) < d∗ log n and τ(z, `) ≥ n1−q}.
Also, set Y (1) = {(z, `) ∈ Y : [ψ∗(z, `)] = 1 and σ(z) < M1 log 2 + M2}. By
Proposition 8.5,

|1{σ<d0 logψ}1{τ≥ψ1−q}I(s)|1 ≤ |1{σ<M1 logψ∗+M2}1{τ≥ψ1−q
∗ }I(s)|1

≤ |1{[ψ∗]=1}1{σ<M1 log 2+M2}I(s)|1 +
∑

n≥2 |1{[ψ∗]=n}1{σ<d∗ logn}1{τ≥n1−q}I(s)|1
=
∑

n≥1 |1Y (n)I(s)|1.

Let β′′ < β′. For y = (z, `) ∈ Y (n),

|I(s)(y)| ≤ 4|s|β′′ψ(y)β
′′ ≤ 4|s|β′′σ(z)β

′′
ψ∗(y)β

′′ � |s|β′′(log(n+ 1))β
′′
nβ
′′
.

It follows that

|1{σ<d0 logψ}1{τ≥ψ1−q}I(s)|1 � |s|β
′′∑

n≥1(log(n+ 1))β
′′
nβ
′′
µ(Y (n)).

Provided
∑

n≥1(log(n + 1))β
′′
nβ
′′
µ(Y (n)) < ∞, we obtain from (8.3) and (8.4) the

desired estimate for
∫
Y
I(s) dµ.

It remains to show that
∑

n≥1 n
β′′µ(Y (n)) < ∞ for all β′′ < β′. For this, it is

enough to show for n ≥ 2 that µ(Y (n))� (log n)2µX(Xq(n)). Let y = (z, `) ∈ Y (n).
Then τ0(f `z) ≥ n1−q and [τ0(f jz)] = n for some j with 0 ≤ j < ` < d∗ log n. Hence
f jz ∈ Xq(n), and it follows that

Y (n) ⊂
{

(z, `) ∈ Y : z ∈ An, 1 ≤ ` < d∗ log n
}
,

where An =
⋃[d∗ logn]−1
j=0 f−jXq(n). Since dµZ/dµX ∈ L∞(Z),

µ(Y (n)) = σ̄−1

∫
Z

σ(z)−1∑
`=0

1{z∈Z:(z,`)∈Y (n)} dµZ ≤
∫
Z

∑
1≤`<d∗ logn

1{z∈Z:z∈An} dµZ

≤ d∗(log n)µZ(An)� (log n)µX(An)

≤ (log n)

[d∗ logn]−1∑
j=0

µX(f−jXq(n)) < d∗(log n)2µX(Xq(n)),

as required.

Corollary 8.7 Assume that the density dµX/dµZ is bounded below on Z. Suppose
that there are constants C > 0, p, q ∈ (0, 1), such that

µX(Xq(n)) ≤ Cn−pµX(x ∈ X : [τ0(x)] = n) for all n ≥ 1. (8.5)

Then (A1)(iii) holds for any β+ ∈ (β,min{1, β + p, β/(1− q)}).
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Proof Let β′ ∈ (β, β + p). Then∑
n≥1 n

β′µ(Xq(n)) ≤ C
∑

n≥1 n
β′−pµX([τ0] = n) <∞,

since µX(τ0 > n) = O(n−β).

Condition (8.5) has been verified in the setting of infinite horizon planar dispersing
billiards by [46, Lemma 16] (see also [17, Lemma 5.1]). For Example 1.2, it is easier
to work with the following related condition. Define the two new subsets X+

q (n) ⊂ X
and X ′q(n) ⊂ X,

X+
q (n) =

{
[τ0] ≥ n and τ0 ◦ f j ≥ n1−q for some 1 ≤ j < d∗ log n

}
.

X ′q(n) =
{

[τ0] ≥ n and τ0 ◦ f j ≥ n1−q for some d∗ log n ≤ j < d∗ log(n+ 1)
}
.

Proposition 8.8 Assume that the density dµX/dµZ is bounded below on Z. Suppose
that there are constants C > 0, p, q ∈ (0, 1), such that

µX(X+
q (n)) ≤ Cn−(β+p) and µX(X ′q(n)) ≤ Cn−(β+p), (8.6)

for all n ≥ 1. Then (A1)(iii) holds for any β+ ∈ (β,min{1, β + p, β/(1− q)}).

Proof First note that X+
q (n+ 1) ⊂ X+

q (n) ∪X ′q(n). Hence

µX({X+
q (n) ∪X ′q(n)} \X+

q (n+ 1)) = µX(X+
q (n) ∪X ′q(n))− µ(X+

q (n+ 1)

≤ µX(X+
q (n))− µ(X+

q (n+ 1)) + µ(X ′q(n)).

Also, Xq(n) ⊂ X+
q (n) \X+

q (n+ 1) ⊂ {X+
q (n) ∪X ′q(n)} \X+

q (n+ 1), so

µX(Xq(n)) ≤ µX(X+
q (n))− µ(X+

q (n+ 1)) + µ(X ′q(n)).

We claim that the series

S1 =
∑

n≥1 n
β′{µX(X+

q (n))− µ(X+
q (n+ 1))} and S2 =

∑
n≥1 n

β′µ(X ′q(n))

converge for β′ ∈ (β, β + p). The result then follows from Proposition 8.6.
It remains to verify the claim. Convergence of S1 follows since µX(X+

q (n)) ≤
Cn−(β+p). Next, we note that X ′q(n) = ∅ unless there exists an integer j ∈
[d∗ log n, d∗ log(n+ 1)), in which case n = n(j) = [ej/d∗ ]. Hence

S2 =
∑

j≥1 n(j)β
′
µ(X ′q(n(j)))�

∑
j≥1 n(j)β

′
n(j)−(β+p)

=
∑

j≥1[ej/d∗ ]−(β+p−β′)

�
∑
j≥1

e−j(β+p−β′)/d∗ <∞,

completing the proof.
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9 Verification of hypotheses for Example 1.1

In this section, we return to Example 1.1 and show that Theorem 2.5 applies in this
case under the assumption that τ0 is both of bounded variation and Hölder continuous.

The first step is to pass from the original suspension semiflow on Xτ0 to a sus-
pension of the form Y τ where Y is a probability space and τ is an nonintegrable roof
function.

We take Y to be the interval of domain of the rightmost branch of f . Define F =
fσ0 : Y → Y for σ0 = min{n ≥ 1 : fny ∈ Y }. Then µ = (µX |Y )/µX(Y ) is an acip for

F . The corresponding roof function τ : Y → R+ is given by τ(y) =
∑σ0(y)−1

`=0 τ0(f `y).
Let Ft : Y τ → Y τ be the corresponding suspension semiflow with infinite invariant
measure µτ .

In [14, Section 9], taking Z = Y , a reinduced full branch Gibbs-Markov map
G = F σ : Z → Z is obtained, with inducing time σ : Z → Z+ having exponential
tails. Let µZ denote the unique acip.

Proposition 9.1 Suppose that τ0 is Hölder with exponent η ∈ (0, 1). Then µ(τ >
t) = ct−β +O(t−(1+β)η) for some c > 0.

Proof Let σZ(y) =
∑σ(y)−1

j=0 σ0(F jy). By [14, Lemma 9.1], the tails of σZ satisfy

µZ(σZ > n) = cZn
−β +O(n−2β) for some cZ > 0.

By [14, Lemma 9.2], µ(σ0 > n) = µZ(σZ > n) +O(n−(1+β)), and hence

µ(σ0 > n) = cFn
−β +O(n−2β) for some cF > 0.

This corresponds to [38, Condition (2.3) in the proof of Proposition 2.7] and we can
now proceed as in the remainder of the proof of [38, Proposition 2.7].

The map F is uniformly expanding, but nonMarkov in general. Hence we take
B(Y ) = BV (Y ) with norm ‖v‖ = |v|∞+ Var v where Var denotes the variation on Y .
In particular, B(Y ) is embedded in L∞(Y ).

Proposition 9.2 Suppose that τ0 is of bounded variation and Cη for some η > 0.
Then conditions (H1)–(H3) are satisfied.

Proof (H2): The properties of the reinduced map G are given in [14, Section 9].
For instance, (H2)(ii) and (H2)(iv) follow from uniform expansion of F , and (H2)(iii)
from uniform expansion of F combined with Adler’s condition.

(H3): Let y, y′ ∈ Y with σ0(y) = σ0(y′). Since f ′ ≥ 1 and τ0 ≥ 2,

|τ(y)− τ(y′)| ≤ |τ0|η
σ0(y)−1∑
`=0

|f `y − f `y′|η

≤ |τ0|ησ0(y)|Fy − Fy′|η ≤ 1
2
|τ0|ητ(y)|Fy − Fy′|η. (9.1)
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Next let, z, z′ ∈ a, a ∈ α. It follows from [14, Section 9] that σ0(F `z) = σ0(F `z′)
for all 0 ≤ ` ≤ σ(a)− 1. Hence for 1 ≤ ` < σ(a),

|τ`(z)− τ`(z′)| ≤
`−1∑
j=0

|τ(F jz)− τ(F jz′)| ≤ |τ0|η
σ(a)−1∑
j=0

τ(F jz)|F j+1z − F j+1z′|η

≤ |τ0|η
σ(a)−1∑
j=0

τ(F jz)|Gz −Gz′|η = |τ0|ηϕ(z)|Gz −Gz′|η � infa ϕ|Gz −Gz′|η.

This is condition (H3).

(H1): It is standard that B(Y ) = BV (Y ) is compactly embedded in L1(Y ). Since
B(Y ) is embedded in L∞(Y ) it follows immediately that B(Y ) is compactly embedded
in Lp(Y ) for all p. Indeed suppose that vn ∈ B(Y ) with ‖vn‖B(Y ) = 1. There exists
v ∈ B(Y ) with ‖v‖B(Y ) = 1 and a subsequence nk such that vnk → v in L1(Y ). Then
|vnk − v|∞ � ‖vnk − v‖B(Y ) ≤ 2, so for any p ≥ 1,∫

Y
|vnk − v|p dµ ≤ |vnk − v|p−1

∞
∫
Y
|vnk − v| dµ� |vnk − v|1 → 0,

establishing compactness in Lp(Y ). Also it is standard that for s = 0 the Lasota-
Yorke inequality holds for p = 1 and hence all p ≥ 1, completing the verification
of (H1)(i).

Let P : L1(Y ) → L1(Y ) be the “unnormalized” transfer operator given by∫
Y
Pv w dLeb =

∫
Y
v w ◦ F dLeb. The density dµ/dLeb lies in B(Y ) and is bounded

above and below. Recall that

Pv =
∑

I{Jv} ◦ ψI1FI ,

where {I} is the collection of domains corresponding to branches of F , J = 1/|F ′|
and ψI = (F |I)−1.

By standard arguments,

‖Pv‖B(Y ) ≤ |Pv|∞ + Var(Pv) ≤
∑

I(3 supI(Jv) + VarI(Jv))

�
∑

I µ(I)(supI v + VarI v),

where VarI v denotes the variation of v on I. Hence

‖(R̂(s)− R̂(0))v‖B(Y ) = ‖R((e−sτ − 1)v)‖B(Y ) � ‖P ((e−sτ − 1)v)‖B(Y )

�
∑

I µ(I){supI((e
−sτ − 1))v + VarI((e

−sτ − 1)v)}
� ‖v‖B(Y )

∑
I µ(I){supI(e

−sτ − 1) + VarI(e
−sτ − 1)}. (9.2)

Since the images f `I are disjoint for ` = 0, 1, . . . , σ0(I)−1, it follows that VarI τ ≤
Var τ0. Also, |e−sτ(y) − e−sτ(y′)| ≤ |s||τ(y)− τ(y′)| for all y, y′ ∈ Y , s ∈ H, so

VarI(e
−sτ − 1) = VarI(e

−sτ ) ≤ |s|VarI τ ≤ |s|Var τ0, for all s ∈ H.
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Also, it follows as in (9.1) that supI τ− infI τ � σ0|I � infI τ , so supI(e
−sτ−1) ≤

2|s|β−ε supI τ
β−ε � |s|β−ε infI τ

β−ε. Substituting into (9.2), for s ∈ H bounded,

‖R̂(s)− R̂(0)‖B(Y ) � |s|β−ε
∑

I µ(I){infI τ
β−ε + Var τ0}

≤ |s|β−ε{
∫
Y
τβ−ε dµ+ Var τ0} � |s|β−ε.

Condition (H1)(ii) now follows from Remark 2.3.
Similarly,

|R(τβ−εv)|∞ � |P (τβ−ε|v|)| ≤
∑

I supI(Jτ
β−ε|v|)

� |v|∞
∑

I µ(I) infI τ
β−ε ≤ |v|∞

∫
Y
τβ−ε dµ� ‖v‖B(Y ),

verifying (H1)(iii).

By Propositions 9.1 and 9.2, we can apply Theorem 2.5 with B(Y ) = BV (Y ) and
q = (1 + β)η whenever (H4) is satisfied. If we suppose moreover that τ0 is C1 and
satisfies (UNI), then the improved result in Theorem 7.1 applies with q = 1 + β.

10 Verification of hypotheses for Example 1.2

In this section, we return to Example 1.2 and show how to apply Theorem 2.8.
Recall that X = [0, 1] and f : X → X is a C2 unimodal map, so there is a unique

critical point x0 ∈ (0, 1) and f is strictly increasing on [0, x0] and strictly decreasing
on [x0, 1]. We suppose for convenience that the critical point x0 is nondegenerate, but
the general case of non-flat critical points works similarly. We suppose further that f
is Collet-Eckmann [18]: there are constants C > 0, λCE > 1 such that |(fn)′(fx0)| ≥
CλnCE for all n ≥ 1. It follows [27] that there is a unique acip µX that is mixing up to
a finite cycle. We restrict to the case when µX is mixing. Finally, we suppose that
x0 satisfies slow recurrence in the sense that limn→∞ n

−1 log |fnx0 − x0| = 0.

Remark 10.1 There are many maps within the logistic family fa : x 7→ ax(1 − x)
satisfying the above conditions. By [27], the set S ⊂ [0, 4] of parameters such that
fa does not have an attracting periodic orbit has positive Lebesgue measure. By [5,
Theorems A and B], the Collet-Eckmann and slow recurrence conditions hold for a.e.
a ∈ S.

By eg. [13, 49], f is modelled by a Young tower πY : Y = Zσ → X as described
in Section 8, where the inducing time σ : Z → Z+ has exponential tails.2

Next, recall from Example 1.2 that the roof function τ0 : X → R+ has the form
τ0(x) = g(x)|x− x0|−1/β where β ∈ (1

2
, 1) and g : [0, 1]→ (1,∞) is differentiable.

Lemma 10.2 For maps f and roof functions τ0 as defined above,

2This is not the first return time to Z except when x0 is non-recurrent, i.e., the Misiurewicz
condition holds.
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(a) µX(τ0 > t) = ct−β +O(t−2β) where c > 0 is a constant given explicitly below.

(b) (H2) and (H3) hold.

(c) Hypothesis (A1) holds for the function space defined in Section 8. In (A1)(iii),
we can take any β+ in the range β < β+ < min

{
1, 1

2
(
√

5 + 1)β
}

.

Hence, the required rates of mixing in Example 1.2 follow from Theorem 2.8
provided (H4) is satisfied, with d1 = 1

cπ
sin βπ.

We begin by proving Lemma 10.2(a). The density h = dµX/dLeb is bounded
below and has the form

h(x) =
∑

n≥1 hn(x)|(fn)′(fx0)|−1/2|x− fnx0|−1/2, (10.1)

where the hn are C1 functions supported on one-sided neighbourhoods of fnx0, and
are uniformly bounded in n. An upper bound of this form was obtained by [42]. The
simplest way to obtain the precise expression for h is to observe that

h(x) =
∑

n≥2 h̃n(x) |(fn)′(fx0)|−1/2(|x− fnx0|−1/2 + |x− f b(n)−1x0|−1/2)

where h̃n(x)|(fn)′(fx0)|−1/2(|x− fnx0|−1/2 + |x− f b(n)−1x0|−1/2) is the density of µX
lifted to the n-th level of the Hofbauer tower, cf. Keller [28]. (Here b(n) < n is an
integer determined by the combinatoric properties of f .)

Lemma 10.2(a) now follows from the choice of roof function τ0 and (10.1) with

c = g(x0)β
∑

n≥1 hn(x0)|(fn)′(fx0)|−1/2|x0 − fnx0|−1/2.

(Convergence of this series follows from the Collet-Eckmann and slow recurrence
conditions.)

Lemma 10.3 (H2) and (H3) are satisfied.

Proof The existence of inducing schemes for Collet-Eckmann maps is well-known,
see e.g. [27, 13], and (H2) follows automatically, but we review the particular con-
struction following [12] to ensure that (H3) holds.

Let Z, Z ′ be intervals with x0 ⊂ IntZ and Z̄ ⊂ IntZ ′ such that trajectories
starting in f(∂Z) ∪ ∂Z ′ do not intersect IntZ ′, cf. [41, p. 330]. For a.e. z ∈ Z,
one can find a minimal integer σ(z) ≥ 1 for which there are intervals a ⊂ a′ ⊂ Z
with z ∈ Int a such that fσ(z) : a′ → Z ′ is a diffeomorphism and fσ(z)(a) = Z.
Moreover, for any two points, the corresponding intervals a coincide or are disjoint
(so σ is constant on each a). Define α = {a} and G = fσ. Standard Koebe distortion
arguments (see [41, Chapter IV, Theorem 1.2]) ensure that∣∣∣G′(z)

G′(z′)
− 1
∣∣∣ ≤ C|Gz −Gz′| for all z, z′ ∈ a,
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for a constant C depending only on f and the intervals Z, Z ′. It follows from the
Collet-Eckmann condition that Leb(z ∈ Z : σ(z) > n) = O(e−dn) for some d > 0, see
e.g. [13]. Now G = fσ : Z → Z is the required induced Gibbs-Markov map, and there
exists an acip µZ with density above and below. Moreover, there exists θ0 ∈ (0, 1)
such that |Gz −Gz′| � dθ0(Gz,Gz

′) = θ−1
0 dθ0(z, z

′) for all z, z′ ∈ a, a ∈ α.
The choices of Z ⊂ Z ′ and a ⊂ a′ allow us to show (again using standard Koebe

distortion estimates) that there exists δ > 0 such that the components of f `(a′ \ a)
have length at least δ|f `a| for each a ∈ α and 0 ≤ ` < σ(a). Let z ∈ a. Since
fσ(a)−` : f `a′ → Z ′ is a diffeomorphism, x0 6∈ f `a′. Also f `z ∈ f `a and f `a ⊂ Int f `a′.
Hence the interval [f `z, x0] contains a component of f `(a′ \ a), so |f `z− x0| ≥ δ|f `a|.
Using Koebe distortion once more for fσ(a)−` : f `a→ Z,

|f `z − f `z′|
|f `z − x0|

≤ |f
`z − f `z′|
δ|f `a|

� |Gz −Gz
′|

|Z|
� dθ0(z, z

′) for all z, z′ ∈ a, 0 ≤ ` < σ(a).

Also, for x, y ∈ X with |x− x0| ≥ |y − y0|,

|τ0(x)− τ0(y)| ≤ |g(x)− g(y)||x− x0|−1/β + |g(y)|
∣∣|x− x0|−1/β − |y − x0|−1/β

∣∣
� |x− x0|−1/β|x− y| + |x− x0|−1/β|y − x0|−1/β

∣∣|y − x0|1/β − |x− x0|1/β
∣∣

� τ0(x)
{
|x− y| + |y − x0|−1/β

∣∣|y − x0|1/β − |x− x0|1/β
∣∣}

� τ0(x)
{
|x− y|+ |y − x0|−1/β|y − x0|1/β−1|x− y|

}
� τ0(x)|x− y||y − x0|−1.

Hence |τ0(f `z)− τ0(f `z′)| � τ0(f `z)|f `z − f `z′|/|f `z′ − x0| � τ0(f `z)dθ0(z, z
′), and

|τ`(z)− τ`(z′)| ≤
`−1∑
j=0

|τ0(f jz)− τ0(f jz′)| �
`−1∑
j=0

τ0(f jz)dθ0(z, z
′) ≤ ϕ(z)dθ0(z, z

′).

This is (H3).

Lemma 10.4 Let p, q ∈ (0, 1) with (1− q)β > p. Then there exists C > 0 such that
the conditions in (8.6) hold.

Proof Choose α > 0 small so that p′ = (1 − q)β − αd∗ > p. Let Un = {x ∈ X :
[τ0(x)] ≥ n}, so Un is an interval containing x0 of radius O(n−β).

We claim that there is a constant C > 0 such that

µX(Un ∩ f−jUn1−q) ≤ Cn−(β+p′) for all n ≥ 1, j < d∗ log n.

Then µX(X+
q (n)) ≤

∑
1≤j<d∗ logn µX(Un ∩ f−jUn1−q) � n−(β+p), and µX(X ′q(n)) ≤∑

d∗ logn≤j<d∗ log(n+1) µX(Un ∩ f−jUn1−q)� n−(β+p) as required.
It remains to verify the claim. Fix j < d∗ log n, and let J be a maximal interval

in Un ∩ f−jUn1−q on which f j is monotone. For each such J let J ′ be the maximal
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interval, J ⊂ J ′ ⊂ X, on which f j is monotone. Note that the intervals J ′ obtained
in this way are disjoint.

Since f jJ ⊂ Un1−q and J ⊂ J ′ ∩ Un, it follows that f j(J ′ ∩ Un) intersects Un1−q .
Hence we can choose y ∈ f j(J ′ ∩ Un) with |y − x0| � n−(1−q)β.

Since J ′ is a maximal interval of monotonicity for f j, there exist k1, k2 ≤ j such
that f jJ ′ = [fk1x0, f

k2x0]. Note that f j is not monotone on Un so without loss
fk1x0 ∈ f jUn. By slow recurrence, |fk1x0 − x0| � e−αd∗ logn = n−αd∗ . Hence

|f j(J ′ ∩ Un)| ≥ |fk1x0 − y| ≥ |fk1x0 − x0| − |y − x0| � n−αd∗ − n−(1−q)β � n−αd∗ .

By the Koebe distortion lemma, there is a constant C such that

|J |
|J ′ ∩ Un|

≤ C
|f jJ |

|f j(J ′ ∩ Un)|
� n−(1−q)β

n−αd∗
= n−p

′
.

Hence

|Un ∩ f−jUn1−q | =
∑

J |J | � n−p
′∑

J |J ′ ∩ Un| ≤ n−p
′ |Un| � n−(β+p′).

Let I = Un ∩ f−jUn1−q . We have shown that |I| � n−(β+p′) and we require that
µX(I)� n−(β+p′). By (10.1) and the Collet-Eckmann condition,

µX(I) =

∫
I

h(x) dx�
∑
i≥1

λ
−i/2
CE

∫
I

|x− f ix0|−1/2dx.

Note that
∫
I
|x − f ix0|−1/2dx ≤ min{|I|d(f ix0, I)−1/2, 2|I|1/2}, where d(f ix0, I) de-

notes the distance between f ix0 and I. Fix k > 1 large. Then µX(I) � S1 + S2

where

S1 = |I|
∑

1≤i≤k logn

λ
−i/2
CE d(f ix0, I)−1/2 � n−(β+p′)

∑
1≤i≤k logn

λ
−i/2
CE d(f ix0, I)−1/2,

S2 = |I|1/2
∑

i>k logn

λ
−i/2
CE � |I|1/2n−(k/2) log λCE � n−(β+p′)/2n−(k/2) log λCE .

Clearly, S2 � n−(β+p′) for k sufficiently large.
Choose δ > 0 small. (In fact, the choices k = (β+p′)/ log λCE, δ = β/(2k) suffice.)

By slow recurrence, |f ix0 − x0| � e−δi. Also x0 ∈ Un, I ⊂ Un and |Un| � n−β, so
d(f ix0, I) � e−δi − n−β. For i ≤ k log n with k sufficiently large, d(f ix0, I) � e−δi.
Hence S1 ≤ n−(β+p′)

∑
i≥1(λ−1

CE e
δ)i/2 � n−(β+p′). We conclude that µX(I) � n−(β+p′)

and the proof is complete.

Now take p = 1
2
(
√

5−1)β and (1−q)β = p− ε. Then Lemma 10.4 applies and the

range β < β+ < min
{

1, 1
2
(
√

5 + 1)β
}

in Lemma 10.2(c) follows from Proposition 8.8.
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A Correlation function of a suspension semiflow

In this appendix, we verify formula (4.1) following [43].

Proposition A.1 ρ̂v,w(s) = Ĵ(s) +
∫
Y
T̂ (s)vsws dµ for all s ∈ H.

Proof First observe that ρv,w(t) =
∑∞

n=0Kn(t), where

Kn(t) =

∫
Y τ

1{τn(y)<t+u<τn+1(y)}v(y, u)w ◦ Ft(y, u) dµτ

=

∫
Y τ

1{τn(y)<t+u<τn+1(y)}v(y, u)w(F ny, t+ u− τn(y)) dµτ .

For all n ≥ 0,

K̂n(s) =

∫ ∞
0

e−st
∫
Y τ

1{τn(y)−u<t<τn+1(y)−u}v(y, u)w(F ny, t+ u− τn(y)) dµτ dt.

When n ≥ 1, we have u < τ(y) ≤ τn(y) for all (y, u) ∈ Y τ , and hence

K̂n(s) =

∫
Y

∫ τ(y)

0

∫ τn+1(y)−u

τn(y)−u
e−stv(y, u)w(F ny, t+ u− τn(y)) dt du dµ.

The substitution u′ = t+ u− τn(y) yields

K̂n(s) =

∫
Y

(∫ τ(y)

0

esuv(y, u) du
)(∫ τ(Fny)

0

e−su
′
w(F ny, u′) du′

)
e−sτn(y) dµ

=

∫
Y

e−sτnvsws ◦ F n dµ =

∫
Y

R̂(s)nvsws dµ.

Also,

K̂0(s) =

∫
Y

∫ τ(y)

0

∫ τ(y)−u

0

e−stv(y, u)w(y, t+ u) dt du dµ

=
(∫

Y

∫ τ(y)

0

∫ τ(y)

0

−
∫
Y

∫ τ(y)

0

∫ u

0

)
esuv(y, u)e−stw(y, t) dt du dµ

=

∫
Y

vsws dµ+ Ĵ(s).

Hence ρ̂v,w(s) = Ĵ(s) +
∑∞

n=0

∫
Y
R̂(s)nvsws dµ = Ĵ(s) +

∫
Y

(I − R̂(s))−1vsws dµ.

B Quasicompactness for Young towers

In this section, we show that (A1)(i),(ii) are satisfied for the function space B(Y )
defined in Section 8. We use the facts that (i) τ p ∈ L1 for all p < β, (ii) σ has
exponential tails, (iii) G is a full branch Gibbs-Markov map, (iv) τ satisfies (H3).

Recall that B(Y ) depends on β′, θ, ε. Throughout, we fix β′ ∈ (0, β) and θ ∈
[θβ
′

0 , 1).
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B.1 Compact embedding

In this subsection, we verify (A1)(i).

Proposition B.1 Let p ∈ (1,∞). Choose ε > 0 so that
∫
Z
eεpσ dµZ < ∞. Then

B(Y ) is compactly embedded in Lp(Y ).

Proof We have

|v|pp �
∑
a∈α

∫
a

σ(a)−1∑
`=0

|1a×{`}v|p∞ dµZ ≤ ‖v‖pw,∞
∑
a

µZ(a)eεpσ(a) � ‖v‖pw,∞ ≤ ‖v‖
p
B(Y ).

Hence B(Y ) is embedded in Lp(Y ). Compactness of the embedding is a standard
Arzelà-Ascoli argument. Since the setting is nonstandard, we provide the details.

For k ≥ 1, define the partition βk = {a × {`} : a ∈ αk, 0 ≤ ` ≤ σ(a) − 1} of Y .
For each b ∈

⋃
k≥1 βk, choose yb ∈ b.

Let vn ∈ B(Y ) with ‖vn‖B(Y ) ≤ 1. For each b = a× {`}, the real sequence vn(yb)
is bounded by eε` and hence has a convergent subsequence. By a diagonal argument,
we can suppose without loss that vn(yb) is convergent for all b ∈

⋃
k≥1 βk.

Let y ∈ Y` and choose b = a×{`} ∈ βk containing y. Then dθ(y, yb) ≤ diam a = θk

and

|vn(y)− vm(y)| ≤ |vn(y)− vn(yb)|+ |vn(yb)− vm(yb)|+ |vm(yb)− vm(y)| (B.1)

≤ 2eε`ϕ(y)β
′
dθ(y, yb) + |vn(yb)− vm(yb)| ≤ 2eε`ϕ(y)θk + |vn(yb)− vm(yb)|.

It follows that lim supm,n→∞ |vn(y)− vm(y)| ≤ 2eε`ϕ(y)θk. Since k is arbitrary, vn(y)
is a Cauchy sequence for each y. Hence there is a function v : Y → R such that
vn → v pointwise. Moreover, for y, y′ ∈ Y` it is immediate that v inherits from vn the
properties |v(y)| ≤ eε` and |v(y)− v(y′)| ≤ eε`ϕ(y)β

′
dθ(y, y

′), so ‖v‖B(Y ) ≤ 1.
It remains to show that |vn−v|p → 0. Let δ > 0 and fix k ≥ 1 such that diam b < δ

for all b ∈ βk. By (B.1),

|vn(y)−v(y)| ≤ 2eε`ϕ(y)δ+ |vn(yb)−v(yb)| for all y ∈ b = a× {`}, a ∈ αk, `, n ≥ 1.

Choose finitely many cylinders bj = aj × {`j}, j = 1, . . . ,m, with aj ∈ αk such that
µ(b1 ∪ · · · ∪ bm) > 1 − δ and let `∗ = max{`1, . . . , `m}, ϕ∗ = supb1∪···∪bm ϕ. Then for
n sufficiently large,

|vn(y)− v(y)| ≤ 3eε`∗ϕ∗δ for all y ∈ b1 ∪ · · · ∪ bm.

Also

|vn(y)− v(y)| ≤ |vn(y)|+ |v(y)| ≤ 2eε` ≤ 2eεσ(y) for all y ∈ b = a× {`} ∈ βk.
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Hence, writing Y ′ = Y \ (b1 ∪ · · · ∪ bm),

|vn − v|pp ≤
m∑
j=1

∫
bj

|vn − v|p dµ+
∑
b∈Y ′

∫
b

|vn − v|p dµ ≤ (3eε`∗ϕ∗δ)
p + 2p

∫
Y ′
eεpσ dµ.

Since µ(Y ′) < δ and eεpσ ∈ L1(Y ), we have that
∫
Y
|vn − v|p dµ � δp + g(δ) where

limδ→0 g(δ) = 0. Hence |vn − v|p → 0 as n→∞.

B.2 Lasota-Yorke inequality for R̂(s)

In this subsection, we verify (A1)(ii). Choose ε > 0 so that
∫
Z
eεσϕβ

′
dµZ <∞.

Theorem B.2 There exists γ0 ∈ (0, 1) and C > 0 such that

‖R̂(s)nv‖B(Y ) ≤ C(|v|L1(Y ) + γn0 ‖v‖B(Y )),

for all s ∈ H ∩B1(0), v ∈ B(Y ), n ≥ 1.

Define
T̂ (s)n : L1(Z)→ L1(Z), T̂ (s)nv = 1ZR̂(s)n(1Zv).

Let cF θ(Z) denote the usual space of observables v : Z → R that are dθ-Lipschitz
with norm ‖v‖cF θ(Z) = |v|∞+|v|cF θ(Z) where |v|cF θ(Z) = supz 6=z′ |v(z)−v(z′)|/dθ(z, z′).

The key step is to estimate T̂ (s)n : cF θ(Z) → cF θ(Z). For this, we need the
following technical lemma.

Lemma B.3 There exists κ > 0 and γ0 ∈ (0, 1) such that

(a)
∑n

m=1 θ
mµZ(σm = n) = O(γn0 ). (b) µZ(σκn ≥ n) = O(γn0 ).

Proof (a) Let g = 1Z , so gn(z) =
∑n−1

j=0 g(F jz) denotes the number of returns to Z

by time n. By [10, Lemma 3.6],
∫
F−nZ

θgn(z)eε`dµ(z, `) = O(γn0 ) for ε sufficiently small.
In particular,

∫
Z∩F−nZ θ

gn dµZ = O(γn0 ). On Z ∩F−nZ, we have gn ∈ {1, . . . , n}, and
gn = m if and only if σm = n. Hence∫

Z∩F−nZ
θgn dµZ =

n∑
m=1

∫
Z∩F−nZ

1{σm=n}θ
m dµZ =

n∑
m=1

θmµZ(σm = n),

and the result follows.

(b) This is the main estimate obtained in the proof of [10, Lemma 3.6] (see the
estimate for the set Γn defined therein).
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Lemma B.4 There exists γ0 ∈ (0, 1) and C > 0 such that

‖T̂ (s)nv‖cF θ(Z) ≤ C(|v|L1(Z) + γn0 ‖v‖cF θ(Z)),

for all s ∈ H ∩B1(0), v ∈ cF θ(Z), n ≥ 1.

Proof The entire proof is on Z so we write |v|1, |v|θ and ‖v‖θ instead of |v|L1(Z),
|v|cF θ(Z), and ‖v‖cF θ(Z).

Let αm,n = {a ∈ αm : σm(a) = n}. Then Z ∩ F−nZ =
⋃n
m=1

⋃
a∈αm,n a. Hence for

z ∈ Z,

(T̂ (s)nv)(z) =
(
R̂(s)n(1Zv)

)
(z) =

∑
z′∈Z:Fnz′=z

Jn(z′)e−sτn(z′)v(z′)

=
n∑

m=1

∑
a∈αm,n

ξm(za)e
−sτn(za)v(za).

(Here J is the Jacobian for F and Jn =
∏n−1

j=0 J ◦ F j. Recall from Remark 2.4 that ξ

is the Jacobian for G and ξm =
∏m−1

j=0 ξ ◦Gj.)
It follows from (2.1) and Lemma B.3(a) that

|T̂ (s)nv|∞ ≤
n∑

m=1

∑
a∈αm,n

supa ξm supa |v| �
∑n

m=1

∑
a∈αm,n µZ(a)(infa |v|+ θm|v|θ)

≤
n∑

m=1

|1{σm=n}v|1 + |v|θ
n∑

m=1

θmµZ(σm = n)� |v|1 + γn0 |v|θ.

Next, |(T̂ (s)nv)(z)− (T̂ (s)nv)(z′)| ≤
∑n

m=1

∑
a∈αm,n(I1 + I2 + I3), where

|I1| = |ξm(za)− ξm(z′a)| supa |v|, |I2| = supa ξm|v(za)− v(z′a)|,
|I3| = supa ξm supa |v||e−sτn(za) − e−sτn(z′a)|.

By (2.1),

|I1| � µZ(a)dθ(z, z
′)(infa |v|+ θm|v|θ), |I2| � µZ(a)|v|θθmdθ(z, z′).

By Lemma B.3(a), these contribute dθ(z, z
′)(|v|1 + γn0 |v|θ) and dθ(z, z

′)γn0 |v|θ respec-
tively to the sum. Also,

|I3| � µZ(a)(infa |v|+ |v|θθmdθ(z, z′))|e−sτn(za) − e−sτn(z′a)| = I ′3 + I ′′3 ,

where I ′3 ≤ 2µZ(a)|v|θθmdθ(z, z′) which contributes dθ(z, z
′)γn0 |v|θ to the sum, and

I ′′3 = µZ(a) infa |v||e−sτn(za) − e−sτn(z′a)| ≤ 2µZ(a) infa |v||s|β
′|τn(za)− τn(z′a)|β

′
.
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We show below that S =
∑n

m=1

∑
a∈αm,n I

′′
3 � dθ(z, z

′)(|v|1 + γn0 ‖v‖θ). Then

|T̂ (s)nv|θ � |v|1 + γn0 ‖v‖θ and the result follows.
It remains to estimate S. For x, y ∈ a, a ∈ αm,n,

|τn(x)− τn(y)| = |ϕm(x)− ϕm(y)| ≤
m−1∑
j=0

|ϕ(Gjx)− ϕ(Gjy)|

�
m−1∑
j=0

infa(ϕ ◦Gj) dθ0(G
jx,Gjy) =

∑m−1
j=0 infa(ϕ ◦Gj) θ0

m−jdθ0(F
nx, F ny).

Recall that θ ≥ θβ
′

0 , so |τn(x) − τn(y)|β′ �
∑m−1

j=0 infa(ϕ
β′ ◦ Gj) θm−jdθ(F

nx, F ny).
Hence

S � |s|β′
n∑

m=1

∑
a∈αm,n

µZ(a) infa |v|
∑m−1

j=0 infa(ϕ
β′ ◦Gj) θm−jdθ(z, z

′) ≤ dθ(z, z
′)Q,

where

Q =
n∑

m=1

m−1∑
j=0

θm−j
∣∣1{σm=n}|v|ϕβ

′ ◦Gj
∣∣
1

=
n∑

m=1

m∑
j=1

θj
∣∣1{σm=n}|v|ϕβ

′ ◦Gm−j∣∣
1

=
n∑
j=1

n∑
m=j

Qj,m, Qj,m = θj
∣∣1{σm=n}|v|ϕβ

′ ◦Gm−j∣∣
1
.

We claim that there exists κ > 0 and γ0 ∈ (0, 1) such that

(i) Qj,m = O(θκn|v|∞) for j ≥ κn, (ii) Qj,m = O(γn0 |v|∞) for m ≤ 2κn,

(iii) Qj,m = O
(
nθκn|v|θ + θj

∑n
k=0 |1{σm−j=k}v|1|1{σj=n−k}ϕβ

′|1
)

for m− j ≥ κn.

It then follows that

Q� γn1 ‖v‖θ +
n∑
j=1

θj
n∑
k=0

n∑
m=j

|1{σm−j=k}v|1|1{σj=n−k}ϕβ
′ |1

� γn1 ‖v‖θ + |v|1|ϕβ
′ |1 � γn1 ‖v‖θ + |v|1,

for some γ1 ∈ (0, 1), yielding the desired estimate for S.
It remains to verify the claim. Choose r > 1 with rβ′ < β and conjugate expo-

nent r′. By Hölder’s inequality,∣∣1{σm=n}|v|ϕβ
′ ◦Gm−j∣∣

1
� µZ(σm = n)1/r′ |v|∞|ϕβ

′|r � µZ(σm = n)1/r′ |v|∞.
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Estimate (i) is immediate, and estimate (ii) follows by Lemma B.3(b) for κ sufficiently
small. Let q = m− j and write∣∣1{σm=n}|v|ϕβ

′ ◦Gq
∣∣
1

=
∣∣1{σq+σj◦Gq=n}|v|ϕβ′ ◦Gq

∣∣
1

≤
n∑
k=0

∣∣1{σq=k}1{σj=n−k} ◦Gq|v|ϕβ′ ◦Gq
∣∣
1
.

Let RG be the transfer operator for G. Then∣∣1{σq=k}1{σj=n−k} ◦Gq|v|ϕβ′ ◦Gq
∣∣
1

=
∣∣(RG)q(1{σq=k}|v|)1{σj=n−k}ϕβ

′∣∣
1

≤ |(RG)q(1{σq=k}|v|)|∞|1{σj=n−k}ϕβ
′ |1.

We have

|(RG)q(1{σq=k}|v|)|∞ ≤
∑

a∈αq supa ξq1{σq(a)=k} supa |v|
�
∑

a∈αq µZ(a)1{σq(a)=k}(infa |v|+ θq|v|θ) ≤ |1{σq=k}v|1 + θq|v|θ.

For q = m− j ≥ κn, it follows that∣∣1{σm=n}|v|ϕβ
′ ◦Gj

∣∣
1
≤
∑n

k=0

(
|1{σm−j=k}v|1 + θκn|v|θ

)
|1{σj=n−k}ϕβ

′ |1
� nθκn|v|θ +

∑n
k=0 |1{σm−j=k}v|1|1{σj=n−k}ϕβ

′ |1.

Hence we obtain estimate (iii) completing the proof of the claim.

Following [23], we have the decomposition3

R̂(s)n =
∑

n1+n2+n3=n

Â(s)n1T̂ (s)n2B̂(s)n3 + Ê(s)n, (B.2)

where the operators

Â(s)n : cF θ(Z)→ B(Y ), B̂(s)n : B(Y )→ cF θ(Z), Ê(s)n : B(Y )→ B(Y ),

are given by

(Â(s)nv)(x) =
∑

Fny=x, y∈Z
Fy...,Fny 6∈Z

ω(s, n)(y), (Ê(s)nv)(x) =
∑
Fny=x

y,...,Fny 6∈Z

ω(s, n)(y),

(B̂(s)nv)(x) =
∑

Fny=x, Fny∈Z
y,...,Fn−1y 6∈Z

ω(s, n)(y), ω(s, n) = Jne
−sτnv.

Proposition B.5 For all s ∈ H ∩B1(0), n ≥ 1,

3The continuous time analogue of this was used in Section 5.2.
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(i) ‖Â(s)n‖cF θ(Z)→B(Y )) = O(e−εn). (ii) ‖Ê(s)n‖B(Y )→B(Y ) = O(e−εn).

(iii) ‖B̂(s)n‖B(Y )→cF θ(Z) = O(e−εn). (iv)
∑∞

n=0 |B̂(s)n|L1(Y )→L1(Z) ≤ σ̄.

Proof (i) Note that (Â(s)nv)(z, `) ≡ 0 for all ` 6= n and (Â(s)nv)(z, n) =
e−sτn(z,0)v(z). Let y = (z, n), y′ = (z′, n) ∈ a × {n}, a ∈ α. Then τn(z, 0) =∑n−1

`=0 τ0(f `z) and |τn(z, 0)−τn(z′, 0)| � ϕ(z)dθ0(z, z
′) by (H3) since n < σ(a). Hence,

|(Â(s)nv)(y)| = |v(z)| ≤ |v|∞ ≤ ‖v‖cF θ(Z),

and

|(Â(s)nv)(y)− (Â(s)nv)(y′)| ≤ |e−sτn(z,0) − e−sτn(z′,0)||v(z)|+ |v(z)− v(z′)|
≤ 2|s|β′ |τn(z, 0)− τn(z′, 0)|β′|v(z)|+ |v|cF θ(Z)dθ(z, z

′)

� ϕ(z)β
′
dθ(z, z

′)‖v‖cF θ(Z) = ϕ(y)β
′
dθ(y, y

′)‖v‖cF θ(Z).

It follows that ‖Â(s)nv‖B(Y ) � e−εn‖v‖cF θ(Z).

(ii) Note that (Ê(s)nv)(z, `) ≡ 0 if ` ≤ n, while (Ê(s)nv)(z, `) = e−sτn(z,`−n)v(z, `−n)
for ` > n. Let y = (z, `), y′ = (z′, `) ∈ a× {`}, where a ∈ α and n < ` < σ(a). Then

|(Ê(s)nv)(y)| = |v(z, `− n)| ≤ ‖v‖w,∞eε(`−n).

Also, τn(z, ` − n) =
∑`

j=`−n τ0(f jz), so |τn(z, ` − n) − τn(z′, ` − n)| � ϕ(z)dθ0(z, z
′)

by (H3) since 0 ≤ `− n < ` < σ(a). Hence

|(Ê(s)nv)(y)−(Ê(s)nv)(y′)| ≤ 2|s|β′ |τn(z, `− n)− τn(z′, `− n)|β′|v(z, `− n)|
+ |v(z, `− n)− v(z′, `− n)| � eε(`−n)ϕ(z)β

′
dθ(y, y

′)‖v‖B(Y ),

and so ‖Ê(s)nv‖B(Y ) � e−εn‖v‖B(Y ).

(iii) Note that (B̂(s)nv)(z) =
∑
ξ(za)e

−sτn(za,σ(a)−n)v(za, σ(a)− n), where the sum is
over a ∈ α with σ(a) > n. By Remark 2.4, since

∫
Z
eεσ dµZ <∞,

|(B̂(s)nv)(z)| �
∑

a∈α µZ(a)‖v‖w,∞eε(σ(a)−n) � e−εn‖v‖w,∞.

Also,
|(B̂(s)nv)(z)− (B̂(s)nv)(z′)| ≤ I1 + I2 + I3,

where

I1 =
∑

(ξ(za)− ξ(z′a))e−sτn(za,σ(a)−n)v(za, σ(a)− n),

I2 =
∑

ξ(z′a)(e
−sτn(za,σ(a)−n) − e−sτn(z′a,σ(a)−n))v(za, σ(a)− n),

I3 =
∑

ξ(z′a)e
−sτn(z′a,σ(a)−n)(v(za, σ(a)− n)− v(z′a, σ(a)− n)).
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Now, τn(za, σ(a) − n) =
∑σ(a)−1

`=σ(a)−n τ0(f `z) so |τn(za, σ(a) − n) − τn(z′a, σ(a) − n)| �
infa ϕdθ0(z, z

′) by (H3). Since
∫
Z
eεσϕβ

′
dµZ <∞,

|I1| �
∑

µZ(a)dθ(z, z
′)‖v‖w,∞eε(σ(a)−n) � dθ(z, z

′)‖v‖w,∞e−εn,

|I2| �
∑

µZ(a) infa ϕ
β′dθ(z, z

′)‖v‖w,∞eε(σ(a)−n) � dθ(z, z
′)‖v‖w,∞e−εn,

|I3| �
∑

µZ(a)‖v‖θeε(σ(a)−n) infa ϕ
β′dθ(z, z

′)� dθ(z, z
′)‖v‖θe−εn,

so
|(B̂(s)nv)(z)− (B̂(s)nv)(z′)| � e−εn‖v‖B(Y )dθ(z, z

′),

and ‖B̂(s)nv‖cF θ(Z) � e−εn‖v‖B(Y ).

(iv) Define ψ : Y → N, ψ(y) = min{n ≥ 0 : F ny ∈ Z}. Then |B̂(s)nv| =
|R̂(s)n(1{ψ=n}v)| ≤ Rn(1{ψ=n}|v|). Hence |B̂(s)nv|L1(Z) ≤ σ̄|1{ψ=n}|v||L1(Y ).

Proof of Theorem B.2 By Proposition B.5 and Lemma B.4, it follows from (B.2)
that

‖R̂(s)nv‖B(Y ) ≤
∑

n1+n2+n3=n

e−εn1‖Tn2Bn3v‖cF θ(Z) + e−εn‖v‖B(Y )

≤ C
∑

n1+n2+n3=n

e−εn1|Bn3v|L1(Z) + C
∑

n1+n2+n3=n

e−εn1γn2
0 ‖Bn3v‖cF θ(Z) + e−εn‖v‖B(Y )

�
∑

n1+n3≤n

e−εn1 |Bn3v|L1(Z) +
∑

n1+n2+n3=n

e−εn1γn2
0 e−εn3‖v‖B(Y ) + e−εn‖v‖B(Y )

�
∑

n3≥0 |Bn3v|L1(Z) + γn1 ‖v‖B(Y ),

for some γ1 ∈ (0, 1). Finally, it follows from Proposition B.5(iv) that∑
n3≥0 |Bn3v|L1(Z) � |v|L1(Y ).
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[24] S. Gouëzel. Sharp polynomial estimates for the decay of correlations. Israel
J. Math. 139 (2004) 29–65.
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[46] D. Szász, T. Varjú. Limit laws and recurrence for the planar Lorentz
process with infinite horizon. J. Stat. Phys. 129 (2007) 59–80.

[47] D. Terhesiu. Improved mixing rates for infinite measure preserving trans-
formations. Ergodic Theory Dynam. Systems 35 (2015) 585–614.

[48] M. Tsujii. Exponential mixing for generic volume-preserving Anosov flows
in dimension three. J. Math. Soc. Japan 70 (2018) 757–821.

[49] L.-S. Young. Statistical properties of dynamical systems with some hyper-
bolicity. Ann. of Math. 147 (1998) 585–650.

[50] L.-S. Young. Recurrence times and rates of mixing. Israel J. Math. 110
(1999) 153–188.

[51] R. Zweimüller. Ergodic structure and invariant densities of non-Markovian
interval maps with indifferent fixed points. Nonlinearity 11 (1998) 1263–
1276.

54


