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Abstract

Let F' be a (non-Markov) countably piecewise expanding interval map satisfying certain reg-
ularity conditions, and £ the corresponding transfer operator. We prove the Dolgopyat inequality
for the twisted operator £,(v) = L(e*#v) acting on the space BVof functions of bounded vari-
ation, where ¢ is a piecewise C'! roof function.

1 Introduction

A crucial method (including what is now known as the Dolgopyat inequality) to prove exponential
decay of correlations for Anosov flows with C* stable and unstable foliations was developed
by Dolgopyat [7]. Liverani [10] obtained exponential decay of correlations for Anosov flows
with contact structure (and hence geodesic flow on compact negatively curved manifolds of any
dimension).

Baladi & Vallée [4] further refined the method of [7] to prove exponential decay of correla-
tions for suspension semiflows over one-dimensional piecewise C? expanding Markov maps with
C! roof functions. This was extended to the multidimensional setting by Avila et al. [3], to prove
exponential decay of correlations of Teichmiiller flows. Aradjo & Melbourne [1] showed that the
method can be adapted to suspension semiflows over C''+* maps with C' roof functions, which
enabled them to prove that the classical Lorenz attractor has exponential decay of correlations.

In all of the above works, the results are applied to C“ observables for some o > 0. In this
paper, we consider a class of non-Markov maps (see Section 2), obtain a Dolgopyat inequality
on the space of bounded variation (BV) observables (Theorem 2.3). The Dolgopyat inequality
obtained in this paper (assuming the finite image property) allows us to obtain exponential decay
of correlations for skew-products on T? as considered by Butterley and Eslami [5, 8], where the
developed methods do not exploit the presence of the Markov structure.

Most probably, a proof of exponential decay for BV observables for the class of non Markov
maps considered here is not the easiest route; one could, for instance, think of inducing to a
Markov map for which exponential decay of correlation of C? observables is known and then use
approximation arguments to pass to BV observables. Instead, we believe that the benefit of the
Dolgopyat inequality in this setting is that it can be used to study perturbations of the flow (such
as inserting holes in the Poincaré map); it is not at all clear that this can be economically done via
inducing.

The main new ingredient of the proof is to locate and control the sizes of the jumps associated
with BV functions (see Section 4).
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1.1 Specific Examples

Our results (i.e., the Dolgopyat type inequality given by Theorem 2.3) apply to typical AFU maps
presented in Section 2. By typical we mean the whole clas of AFU maps (studied by Zweimiiller
[13, 14]) satisfying assumption (2.5) below. This assumption is very mild, see Remark 2.2. In
particular, this class contains some standard families, such as the shifted S-transformations F' :
[0,1) = [0,1], z = Bz + « (mod 1) for fixed o € [0,1) and 8 > 1.

Another important example is the First Return Map of a (non-Markov) Manneville-Pomeau
map. That is,

F=jf": [%, 1] — [%,1] for 7(z)=min{n>1:f"(z) € [%,1]},
where
. z(1+2%%) z€[0,3);
f:]0,1] — [0,1], x»—>{7(2x_1) ze L1,

is a non-Markov Manneville-Pomeau map with fixed o > 0 and y € (3, 1].

The assumptions below apply to these to these examples, albeit that (2.5) holds for all param-
eters with the exception of a set of Hausdorff dimension < 1, see Remark 2.2. The UNI condition
(2.9) is a generic condition on the roof function of the type previously considered in [4, 3].

2 Set-up, notation, assumptions and results.

We start this section by discussing the class of AFU maps studied by Zweimiiller [13, 14]. We
present their conditions in Subsections 2.1-2.6.

2.1 The AFU map F.

Let Y be an interval and F' : Y — Y a topologically mixing piecewise C? AFU map (i.e.,
uniformly expanding with finite image partition and satisfying Adler’s condition), preserving a
probability measure p which is absolutely continuous w.r.t. Lebesgue measure Leb. Let a be the
partition of " into domains of the branches of F, and " = \/?_' F~“a. Thus F" : a — F"(a)
is a monotone diffeomorphism for each a € «'. The collection of inverse branches of F™ is
denoted as H,,, and each h € H,, is associated to a unique a € o™ such that h : F"(a) — aisa
contracting diffeomorphism.

2.2 Uniform expansion.

Let
po= inf |[F'(z)| and p=py/". @1
e
Since F is uniformly expanding, po > p > 1, but in fact, we will assume that py > 2%/3, which
can be achieved by taking an iterate.

2.3 Adler’s condition.

1

This condition states that sup, ¢, SUp, ¢, % < o0. As F'is expanding, % is bounded
uniformly over the iterates n > 1, a € o' and x € a as well. Thus, there is C; > 0 such that

EY D] g @)

LA S S 6C1|:1:7x'\ .
(FYh)P < W) @2)

foralln > 1, h € H,, and x,2’ € dom(h). The second inequality follows from the first by a
standard computation.
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2.4 Finite image partition.

The map F' need not preserve a Markov partition, but has the finite image property. Therefore
K := min{|F(a)| : a € a} is positive. We assume that F is topologically mixing. This implies
that there is k; € N such that F*1(.J) C Y for all intervals J of length | J| > &y := I;ipcol;)f) (this
choice of d is used in Lemma B.1).

Let X; = X be the collection of boundary points of F(a), a € «, where « is the partition
of Y into branches of F'. Due to the finite image property, X; is a finite collection of points; we
denote its cardinality by N;. Inductively, let X, = F(X,_,), i.e., the set of “new” boundary
points of the k-th image partition, and X, = U;j<; X J’ Therefore # X, < kNp. Let {¢; f‘io be a
collection of points containing X, and put in increasing order, Then

Pr :{(gl—lagt)zz 175M}

is a partition of Y, refining the image partition of F*. In other words, the components of Y \
{&}M ) are the atoms of Py.

2.5 Roof function.

Let o : Y — R™ be a piecewise C'! function, such that ¢ > 1 and

Cy:=sup sup |(poh)(x)|< . (2.3)
heH zedom(h)

Since a main application is the decay of correlations of the vertical suspension semi-flow on
{(y,u) : y € Y,0 <u <oy} (y,0(y)) ~ (F(y),0), see Subsection 2.9, we will call ¢ the
roof function.

Also assume that there is €9 > 0 such that

C3 := sup Z W (2)]ef09°M®) < oo, (2.4)
zeY heH ,xedom(h)

2.6 Further assumption on F' (relevant for the non-Markov case)

We first discuss some known properties of the transfer operator and twisted transfer operator.
Let Leb denote Lebesque measure. Define the BV-norm ||v|gy of v : I — C, for an in-
terval I C R, as the sum of its L'-norm (w.r.t. Leb) |[v||; and the total variation Varjv =
Inf—y ae. SUPgy<...<anel Zi\i1 [0(z;) — 0(wi-1)].

Let £ : LY(Y,Leb) — L*(Y,Leb) be the transfer operators associated to (Y, F') given by
LM = Zhe?—tn |h/'|voh,n > 1.Fors =0 +ib e C,let L, be the twisted version of £ defined
via Lsv = L(e*Pv) with iterates

L= E es?nhp/ lvoh, n>1.
heHny

We first note that for s = 0 € R,

Proposition 2.1. There exist € € (0,1) such that for all |o| < ¢, || Lo |lpv < 0.

Proof. By Remark A.1, there exist ¢1,¢3 > 0 and € € (0, 1) such that Vary (L,v) < ¢; Varyv +
c2||v||0o, for all |o| < e. Note that for any v € BV(Y), ||v]lc < Varyv + ||v|1. Hence,
Vary (Lov) < (1 + c2)Vary v + ca|v|1. Also, [y, |Lov|dLeb < Cal|v]|oe < Co(Varyv + ||vl|1)
and the conclusion follows. O

It is known that £y = £ has a simple eigenvalue Ay = 1 with eigenfunction fy € BV, [13,
Lemma 4] (see also [12]), and C% < folz) < Cyforall x € Y, see [14, Lemma 7]. Hence,
fo is bounded from above and below. This together with Proposition 2.1 implies that there exists
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e € (0,1) such that £, has a family of simple eigenvalues A, for |o| < € with BV eigenfunctions
o

We assumed above that F' has the finite image property, but not that F'™ has the finite image
property uniformly over n > 1. We put a condition on F' as follows: the lengths of the atoms

p € Px, with k specified below, do not decrease faster than p~*:

16C .
min Leb(p) > 8 SUD fo

2.5
PEP Cy inf fg ’ (25

where Cs = 3C7 /o with ng := (\ﬁ—l)/2 and C7 > lisasinLemma5.1,and Cg = nie~“1 /2

is as in Lemma 5.2. Note that S};‘l‘f’;" < oo for |o| small (see Remark 3.2).

Remark 2.2. Assumption (2.5) is trivially satisfied if F' is Markov. For many one-parameter
families of non-Markov AFU maps, one can show that (2.5) only fails at a parameter set of
Hausdorff dimension < 1. This follows from the shrinking targets results [2, Theorem 1 and
Corollary 1] and includes the family of shifted (-transformations r — Sx + « mod 1.

Throughout we fix & > 2k, sufficiently large to satisfy:
p"(p—1) > 12N, Cs, (2.6)

(Inequality (2.6) will be used in estimates in Section 5.) Furthermore, we assume that

p*%(sup fo + Varfy) (ﬁ + Var(%)) <1, 2.7

where f) is the positive eigenfunction of £ associated to eigenvalue \g = 1.

2.7 UNI condition restricted to atoms of the image partition P

Fix k as in Subsection 2.6. Let C}) := % and C1g := (C1e%1+2(1+¢0)e=0%2 Ch+2C) /(20—

4py k), where it follows from (2.6) that the denominator 21y — 4p, ¥ > 0. We assume that there
exist D > 0 and a multiple n¢ of £ such that both

ngdm 1 T
Cropg™ 3 < 1(2 - 2cosﬁ)1/2, (2.8)

and the UNI (uniform non-integrability) condition holds:

¥ atom p € Py, hq, he € H,, such that irelf |v'(z)| > D, (2.9)
zEp

for ¢y = p, 0 h1 — p, 0ha :p = R.

2.8 Main result
Let b € R. For the class of BV functions we define

Vary v
1+ 19

[olly = + vl (2.10)

With the above specified, we can state our main result, a Dolgopyat type inequality.

Theorem 2.3. Suppose that all the above assumptions, (2.1) —(2.9), on the AFU map F, on k
and on the roof function ¢ hold (in particular, we assume that UNI (2.9) holds for some D > 0).
Then there exists A > ng and €,y < 1 such that for all |o| < € and |b| > max{4w/D,2} and
foralln > Alog|b|,

L5 1s <™

An immediate consequence of the above result (see, for instance, [4]) is
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Corollary 2.4. Suppose that all the above assumptions, (2.1) —(2.9), on the AFU map F, on k
and on the roof function ¢ hold. For every 0 < « < 1 there exists € € (0,1) and by > 0 such that
forall |b] > by and for all |o] < ¢,

I = L) ]l < o]

Remark 2.5. A similar, but simplified, argument (obtained by taking ¢ = 0 throughout the
proof of Theorem 2.3 in this paper) shows that without assuming condition (2.4) (that guaran-
tees exponential tail for the roof function ) and with no restriction on the class of BV func-
tions, one obtains that for every 0 < « < 1, there exists by > 0 such that for all |b| > by,
(I — Lip)"|p < |b|*. Of course, this type of inequality does not imply exponential decay of
correlation for suspension semiflows, but we believe it to be useful when proving sharp mixing
rates for BV observables in the non exponential situation via renewal type arguments (such as
sharp bounds for polynomial decay of correlation).

2.9 Application to suspension semi-flows

Corollary 2.4 can be used to obtain exponential decay of correlations in terms of BV functions
for suspension semiflows over AFU maps with a C'* roof function. Let Y := {(y,u) € Y xR :
0 <u < R(y)}/~, where (y, o(y)) ~ (Fy,0), be the suspension over Y. The suspension semi-
flow F} : Y¥ — Y¥ is defined by F;(y,u) = (y,u + t) computed modulo identifications. The
probability measure /¥ := (1 % Leb) /@, where ¢ := [, pdyu is Fi-invariant.

Class of observables Let Fgv ,(Y?) be the class of observables consisting of v(y,u) :
Y¥ — Csuch that vis BV(Y') in y and C™ in w, so ||[v||gy,m := Z;n:O |07 v]|gy < oco.
Forv € L'(Y¥) and w € L>°(Y %) define the correlation function

(v, w) ::/ vaFtdu‘p—/ vd,u“’/ wdu?.
ye ye ye

The result below gives exponential decay of correlation for v € Fpy 2(Y?) and w € L>®(Y'¥).
It is likely that this also follows by reinducing F' to a Gibbs-Markov AFU map, to which [4, 1]
apply, together with an approximation argument of BV functions by C? functions. However, it is
worthwhile to have the argument for the original map F', for instance in situations where reinduc-
ing is problematic, such as for families of open AFU maps with shrinking holes.

Theorem 2.6. Suppose that all the above assumptions, (2.1) —(2.9), on the AFU map F and the
roof function  hold. Then there exist constants ag, a1 > 0 such that

|pe(v, w)] < age™ " [[v]|v,2[lw]loc

forallv € Fgyo(Y?) and w € L>®(Y?).

The proof of Theorem 2.6 is given in Appendix D. Corollary 2.4 also implies exponential
decay of correlations in terms of BV functions for skew products on T? as considered in [5, 8].
We note, however, that the strength of Corollary 2.4 is not needed in the set-up of [5, 8] as, in
those works, the roof function is bounded and one can restrict the calculations to the imaginary
axis.

3 Twisted and normalized twisted transfer operators

We start with the continuty of operator £, in BV.

Proposition 3.1. Let ey > 0and C3 < oo be as in (2.4). Then there exists C > 0and e € (0, )
such that for all ||, |oa| < & and for all |by|, |ba| <1, |£o, vib, = Losrivsllsv < Ceg o103,
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The proof of Proposition 3.1 is deferred to the end of Appendix A.

Remark 3.2. An immediate consequence of Proposition 3.1 is that for any § € (0, 1), there exists
e € (0,1) such that

sup [\, — 1| <4, sup ||f—a —1ljpy <, sup H&

A <6
lo|<e lo|<e fO lo|<e fO =

for all |o| < e. Recall that C% < fo(z) < Cy forall x € Y. It follows that ;ZET/; =

J;’;((fg ?22“3 ]{3(('7:)) < (14 90)C%*1 -6t < oo forall z,y € Y. Hence, ig?;: < Cj for

Cs = 2C% and |o| < e.

Since A\g = 1 and fj is strictly positive, due to the continuity of A, and f,, in o, we can ensure
that for € > 0 sufficiently small

p~ % < X, and f, is strictly positive for all lo| < e. 3.1

By assumption (2.7) and Remark 3.2, we can choose & small enough such that for all |o| < ¢,

mflf,, —&-Var(f%)) <1 (3.2)

(The above formula will be used in the proof of Proposition 3.5.)

o2 (sup £, + Varfy) (

Lemma 3.3. There exists ¢ € (0,1) so small that for all |o| < € and for alln > 1,

1
— sup sup |h/(z)]ePnon) < pmEn (3.3)
/\a h€H x&dom(h)

Remark 3.4. Without assumption (2.4) (i.e., without the exponential tail assumption), we still

have
sup  sup |1/ (w)[e7#mon) < pmIn
heHy z€dom(h)

for —e <o <0.

Proof. We start with n = 1. By continuity of A\, we can take € so small that Aﬁ%g* > (5 for
u = |eo/(4e)] with g € (0,1) and C3 such that (2.4) hold. For h € H; assume by contradiction
that A\ 1/ () [e7#°M®) > p=3 for some = € dom(h). Since |W/| < py ' = p~* we have

)\glempoh(:c) > A;lpél‘h/lempoh(x) >p= p(l)/4 > |h/|_1/4.

Therefore,
[/ [eS0%oh > |R/|eduseoh > | |educvoh > |pr (AT Leowohytu \du
> WG = pp NG > C
contradicting (2.4). The statement for n > 1 follows immediately. O
Let i ) i )
Lsv= Tfaﬁs(fgv) and L,v= Tfnﬁg(fgv)

be the normalized versions of L, and L, .

Proposition 3.5 (Lasota-Yorke type inequality). Choose k and €1 € (0,1) such that (3.2) and

(3.3) hold. Define A, = )\ééz/)\g. Then, there exist € < €1, p > 1 and ¢ > 0 such that for all
s=o+ibwith|o| <eandb e R,

Vary (L3*0) < p~" Varyv + e(1+ [B)AZ*(|[v]|o [0 ]11) "2,

forallv e BV(Y)and alln > 1.
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Proposition 3.5 would be meaningless if A, < 1, but one can check that 1 < A, = 1+0(0?).
The proof of Proposition 3.5 is deferred to Appendix A.

In what follows we focus on the controlling the term containing (||v||os ||v||1)*/? and proceed
as in [4]: we estimate the L? norm of ZT; for n large enough. Once we obtain a good estimate for
the L2 norm, we combine it with the estimate in Proposition 3.5 (following the pattern in [1, 3, 4])
to prove Theorem 2.3.

4 New ingredients of the proof

The basic strategy of the proof using the cancellation lemma follows [ 1, 3, 4]. For the non-Markov
AFU maps, we use the space BV, and hence observables u, v € BV can have jumps. The task is
to locate and control the sizes of these jumps. Given a discontinuity point x for a function v, we
define the size of the jump at x as

Size v(z) = lim sup [v(&) —v(&)]. 4.1
020¢ ¢'e(a—b,a+6)

Recall that the oscillation of a function v : I — C on a subinterval I C Y is defined as

Oscrv = sup |v(€) —v(¢')].
g8'el
It follows that
Oscrv < Oscrov + Size v(x) + Size v(y) 4.2)

for I = [z, y] with interior I°. For positive functions, (4.1) reduces to

imu(§)]. 4.3)

Si =1i — liminfu(¢) = |li —1
ize u(x) = limsup u(¢) imin u(§) Iggu(f) lim

E—ax
We adopt the convention u(z) = lim sup,_, , u(§) at discontinuity points, so we always have the
trivial inequality Size u(z) < u(x).

Definition 4.1. Let k > 1 such that (2.5) holds and take Cr as in Lemma 5.1. We say that a pair
of functions u,v € BV(Y) with |v| < w and u > 0 has exponentially decreasing jump-sizes,
if the discontinuities of u and v belong to Xoo = Uj>1 X} and if x € X for j > k is such a
discontinuity, then

Size v(x), Size u(z) < Crp~Iu(z). 4.4

Example 4.2. For the reader’s convenience, we provide a simple example of functions (u,v)
with exponentially decreasing jump-sizes. Assume that Y = [p, q|. Let {a;};>1 be a sequence in
C such that |a;| — 0 exponentially fast, and {z;};>1 C [p, q|. Then

i>1 i>1

is a pair of functions having exponentially decreasing jump-sizes when X j’ = {z;}. Indeed, let
8" > 0 be arbitrary and let N € N be such that ) ;.\ |a;| < &'. Assuming for simplicity that the
x; are distinct, we have

Sizev() = lim  sup |3 ai(1p (€)1 a(€)

020¢ gre(w;—0,2;+9) | i1

N
Zai(Hwi,q](S) ~Lzial (5’)) + 8 = |aj| + 0.

i=1

< lim sup
020 ¢ ere(w;—6,3,+9)

Since &' was arbitrary, Size v(x;) < |a;|. So, Size v(x;) is exponentially small in j. On the other
hand, if © ¢ {x;}ien, then v is continuous at x, so Size v(x) = 0. A similar computation holds
for Size u(x;).
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Definition 4.1 states that the discontinuities of (u, v) can only appear in X, := U;>1 X7, and

we will see in Proposition 5.3 that this property is preserved under (u,v) (Lru, £7v). For a
given n, we will distinguish between two types of discontinuities of Lu.
(i) Created discontinuities. In this case © € ddom(h) for some h € H,, and z € X J’ for some

1 < j < n. The discontinuity is created because the sum >, <3, ¢cgom(r) involved in L runs
over a different collection of inverse branches depending on whether £ is close to the left or close
to the right of x: in only one of the cases h is part of this collection. It is not important whether
the function u is continuous at y = h(x).
(ii) Propagated discontinuities. Here the function u : Y — R has discontinuities. Hence, it is
discontinuous at y = h(z) for some h € H,,. In this case y € X J’ for some ;7 > 1 and hence
€ X,
Consequently, we define a cone Cp, of BV functions with discontinuities of the type prescribed
in Definition 4.1. In Appendix B, we prove that the eigenfunction f, and 1/f, belong to C.
This argument is independent of Section 7 where the invariance of C, under the transformation
(u,v) — (L£7(xu), L™v) is proved. This invariance depends crucially on Proposition 5.3, which

sup ul,
inf u|,

nuities indeed behave as outlined in this section. To deal with BV observables v ¢ Cp, we exploit
the fact that the size of discontinuities at points x ¢ X, decrease exponentially under iteration of
L. This means that ﬁfjv converges exponentially fast to C, and this suffices to prove the results
for arbitrary BV observables.

together with an inductive bound on for p € Py, and assumption (2.5) imply that disconti-

5 Towards the cone condition: discontinuities and jump-sizes

Recall the sets X ]’ from Section 2.4 and let k satisfy the conditions in Subsection 2.6. To deal
with the discontinuities of (u,v), we introduce the “extra term” for intervals I C Y

Er(u) ::Zp‘j Z lim sup u(§), 3.1

i>k zeX)nIe fow

where we recall that # X J’ < N forall j > 1. The choice of k in (2.6) implies that Cs E;(u) <

1—12 sup; u for every I contained in a single atom of Pj.

Throughout this and the next section we set n = 2k. We start with two lemmas on the proper-
ties of the eigenfunction f,, which will be proved in Section B. We recall (see Remark 1.4) that
fo 1s the positive eigenfunction of £, with eigenvalue A, .

Lemma 5.1. There are Cg, C7 > 1 such that for all o with |o| < ¢ the following holds:
1. f5 has discontinuities only in Xoo, and if v; € X, then Size f,(x;) < Crp~% sup f,.

2. Foreveryinterval I C'Y we have

1 1
Oser(f) < CoLeb(I)inf fo+C1Ei(f5) and Osey: (7) < CoLeb(I)inf -

Lemma 5.2. Let Co = ne~ /2 where 1 € (0,1) is as in Lemma B.1. Choose k such that
(2.5) holds and set n = 2k. Then there exists € € (0,1) such that

+C7E; (fig') .

AT l ocpnoh(z) >
Sinf o Y0 W) > CoLeb(p)
h€Hnp ,xEdom(h)

range(h)Cp
forallp € Py and |o| < e.
The main result in this section is the following.
Proposition 5.3. Choose k such that (2.5) holds and set n = 2k. If the pair (u,v) with |v] < u

has exponentially decreasing jump-sizes (4.4), then for each x € X j’ with 7 > k, we have

Lo o 1 sup u|
Size Lhu(x) , Size LTv(z) < 7 nax infu\:

Crp™ Lhu(z).
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Remark 5.4. It is possible that x belongs to different X ]’ ’s at the same time. This means that the
discontinuity at x is propagated by different branches of F (or x € X| N X; for some j > 2,
and the discontinuity at x is generated in Py as well as propagated from another discontinuity
at some point in X j'»_l ). In this case, we add the jump-sizes at x but the proof remains the same,
i.e., writing x = xj = xj for x; € X} and v € Xj’-,, Size v(z) < Size v(x;) + Size v(xj) <
Cr(p™ + p77)[ulloo-

Proof of Proposition 5.3. By Lemma 5.1, we know that f, and 1/ f, have exponentially decreas-

ing jump-sizes with parameters C'7 and 0.
Let y = h(x) for some h € H, and r > k to be determined below. Let p € Py, such that

y € p. Then
~ 1
Lru(z) > ——— B |e?%roh @) (f ) o h(z
@ > 5 LW (fou) o h(z)
range(h)Cp
inf f, inful, _ , ;
> u(y)A;" | () |e”#ron @)
fg(x) Supu|p ’LEHT,(LZEdOH\(’L)
range(h)Cp
inf f, inful,
> CoLeb(p)u(y 5.2)
Tol) supul, (p)u(y)
by Lemma 5.2.

. . p . . o /
First take j > n and « € X}, so x is a discontinuity propagated from some y € X;_,,. Let

h € H,, such that h(z) = y be the corresponding inverse branch. This is the only inverse branch
that contributes to Size L7v(z). We compute using (3.3) and Lemma 5.1,

Size E?’U((E) — Size <|BI|GSW"OEM)(QJ)

Ao fo
1 77 o no~ xT |U(y)| : . 1 fO'(y) .
< Elh (z)|emon )(mSue Jo(y) + fo(y)|v(y)|Size —U(x) + () Size v(y))
—3nSUP fo Crp~ U= ifj —n >k,
= T {1 ifj—n<k. (5:3)

This distinction is because (4.4) only holds for j —n > k; for j — n < k we only have the trivial
bound Size v(y) < wu(y). The factor 4 is to account for the three terms in the penultimate line
above; in particular, Size v(y) < 2u(y), so the factor 4 appears despite the presence of just three
terms. Since p’zn < p’4k, we have

: ~ 4 sup fO' —7
Size LIv(x) < /———C7pu(y 5.4
P S g
in either case. ~
Combining (5.4) and (5.2) for y = h(z) and » = n, and using the bound on Leb(p) from

(2.5) we obtain

< 4Cy sup ulp sup fo
~ Cop®FLeb(p) inful, inf f,

Now take k£ < j < n, so the discontinuity at x € X j’ is created by non-onto branches of F",

~ .~ 1
Size £v() I () < 2SR

7‘7 Nn
= Tinful, Crp™ L2u(x).

and there exist y € X/ and an inverse branch & € H;_; such that y = h(z). Then, analogous to

(5.3),
Size Lv(z) = Size (|ﬁ’|es“’11°ﬁ(f;§icjﬁ)(x)
< @l
< p/\;(é:l) 4;:&";%(1/) < 74(;,2 ;:(I;‘)f” p I u(y)
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because C7 > 1, k < j <mnand \;* < pby (3.1). Combining this with (5.2) to bound u(y) (but
applied to » = j) and (2.5) gives

_ 4Cy supulp sup fo . = 1 sup u| i
S Ln < P o Jjprn < = p C Jpn
ize Lyv(w) < CypFLeb(p) inful, inf f, P Loulw) < 4 inf ul, o Lou(),
as before. The computations for Size lfgu are the same. O

6 Cancellation lemma

We define a cone of function pairs (u, v):

Cy, = {(u, v) :0<wu, 0<|v] <u, (u,v) has exponentially decreasing
jump-sizes (4.4) and Osc;v < Cio|b|Leb(I) sup u|; + CsEr(u), (6.1)

for all intervals I contained in a single atom of Pk}.

Recall that the choice of k in (2.6) implies that Cs E(u) < % sup; u for every I contained in a
single atom of Py. In Section 7 we show that Cy, is invariant’ in the sense of [4]: see Lemma 7.1.

In this section we provide a cancellation lemma for pairs of functions in C; similar to the one
in [4]. The statement and proof of Lemma 6.1 below follows closely the pattern of the statements
and proofs of [4, Lemma 2.4] and [!, Lemma 2.9]. In this section, we abbreviate

As,h,n = eswn0h|h’/|v oh
for h € H, and @, = Y77 o FY.

Lemma 6.1. Fix k such that (2.5) holds. Recall that ng = @ € (2/3,1). Assume that the UNI
condition in Subsection 2.7 holds (with constant D > 0, k fixed and ng > 1).

Set A = 2Z. There exists § € (0, A) such that the following hold for all |o| < e,
and for all (u,v) € Cyp:

Let p € Py and let hy,hy € Hy, be the branches from UNL. For every yo € p there exists
Y1 € By (yo) such that one of the following inequalities holds on By | (y1):

Case h;. |A87h1,no (fdv) + ASﬁQ,”o(fUU)l < nOAU,hhno (fau) + AU-,hz,no (fau)'
Case hy. |A87h1,no (fav) + ASﬁQ,”o(fUU)l < AU,hhno (fUu) + nOAU,hz,no (fau)'

Proof. Choose § € (0, A) sufficiently small such that

bl > 2A

D 1 T
5@ < 12’ Cod < e (6.2)

Let yo € Y. Note that form = 1, 2,

sup v o hpm| < Oscp;,, (yo) (VO hm) + Anf  |v o hy,| + Size v(Bsyjp (Y0))-
Bs /161 (yo) Bs /v (yo)

Since (u,v) € Cp,

sup  [v o hy| < Croleb(hm (Bs s (¥0)))[0]  sup  (wohy)+  inf  |vo Ay,
Bs /16 (yo) Bs /161 (yo) Bs/1p1(yo)

+ CsE; 1, (yo) (1)
But
)
[o]

0

bl

_ _ D
CroLeb(fum (Bs /v (40))) < Cropg "*Leb(Bsyjp) (%)) = Cropo ™ 7 < 16—
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where in the last inequality we have used (2.8). Putting the above together with the estimate on
E;(u) below equation (5.1) and using the choice of § and &,

sup  (wohy)+ inf fv o). (6.3)
Bs /151 (yo0) Bs /11 (y0)

[

sup  |vohy,| <
Bs /151 (y0)

Case 1. Suppose that infp,,, (yo) [V © | < 1 SUPBJ/W(yo)(u o hy,) for m = 1,2. Then (6.3)
implies that
2

1 1
sup |[vohp| <(z+ =) sup (uohpy)== sup (uohpy)<mny sup (wohpy).
Bs /v (y0) 2 Bs /11 (y0) 3 Bs /b1 (y0) Bs /b1 (y0)

Thus, for m = 1,2, | A, . .no (fo0) ()| < M0 Ac im0 (fou)(y) forall y € Bs /(o). So, Case
h., holds with y; = yo.

Case 2. Suppose the reverse; that is, suppose thatinfp, , , (yo) [V 0 hin| > % SUDB, 41 (o) (wohm)
form =1, 2.

Form = 1,2, write Ag p,, no(fo0)(y) = rm(y)e??=®). Let 0(y) = 01(y) — 6a(y). Choose
6 as in (6.2) and recall A = %’T. A calculation [4, Lemma 2.3] shows that if cosf < 1/2
then rie + rqoeif2 < max{nor1 + 72,71 + nore}. Thus, the conclusion follows once we
show that cosf(y) < 1/2, or equivalently |6(y) — 7| < 2m/3, for all y € Bs/p(y1) for
some y1 € Bayjp|(yo). In what follows we show that [supp, ()0 — 7| < 2m/3, for some
Y1 € Baypp)(yo)-

We start by restricting to By /5 (y0), where & = 0 + A. Note that ¢ = V — by, where
1 = 1p, h, s the quantity defined in UNI and V' = arg(v o hy) — arg(v o hg). We first estimate
Oscp . /\b|(yO)V' For this purpose, we recall a basic trigonometry result (also used inin [4] and [1]):
if |21], |22] > cand |21 — 22| < ¢(2—2cosw)'/? forc > 0and |w| < 7 then | arg(z;)—arg(z2)| <
w.

Since (u,v) € Cp and £ < 47/ D for m = 1,2, we have by (2.8)

4
Oscp (vohm) < Ciopy™— sup  (uohip)
5/\b|(y0) 0 D B§/|b\(y0)

<

1
_1(2—200511)1/2 sup  (uohy). (6.4)

Be /v (yo)

Recalling the assumption of Case 2,

sup  |[vohm,|>| sup |vohm|—Oscp,,, (yo) (VO hm)

Be /v (yo) Be/1v/(vo)
1 1 1
>— sup (wohy)—= sup (uohy,)== sup (uohy). (6.5)
2 Bs /11 (y0) Be /b1 (y0) 4 Be /v (y0)
By equations (6.4) and (6.5),
sup arg(v o hpy(z1)) —arg(v o hpm(22))| < 1,
21,22€B5 /1| (Y0) 12
and thus
T
OSCBg/m(yo)V < g (66)

Next, recall the UNI assumption in Subsection 2.7. Note that for any z € Ba /| (%0),

2
b(1(2) — ¥ ()| = [bllz = yo| inf [¢)'| > DIbl|z — yo| = Kﬁ\bllz — Yol-

11
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Since [b| > 2A, the ball B /5 (y0) C Y contains an interval of length at least A/|b|. Hence, as
z varies in Ba /5| (%0), it fills out an interval around 0 of length at least 27 b(3)(z) — v(y)). This
means that we can choose y; € Ba /js|(y0) such that

b((y1) —¥(y)) = 0(yo) — 7 mod 2.
Note that 6(yo) — V(v0) + by (yo) = 0. Using the above displayed equation,
0(y1) =7 = V(yr) = bb(y1) — 7+ 0(yo) — V(yo) + bb(yo) = V(y1) = V(vo)-

Together with (6.6), the above equation implies that |§(y; ) —7| < 7/6. Recalling supy- |[¢'| < Cy
and our choice of ¢,

sup 60— Sz—i— sup 9—9(;{/1)‘
Bs /1| (y1) 6 Bs /51 (y1)

T

< 6 +1[b] sup |¢— w(yl)’ + OSCBJ/\bI(yl)V + OSCBA/m(yo)V

Bs /b (y1)

T dTr 2w

< 6 + Cod + 2OSC35/|b\(yo)v < F — ?7

which ends the proof. O

Let I? be a closed interval contained in an atom of P, such that if Lemma 6.1 holds on
Bs /15 (y1), we also have By (y1) C IP. Write type(I?) = hy, if we are in case h,,. Then we
can find finitely many disjoint intervals I} = [a;,b;11], 5 = 0,..., N — 1 (with 0 = by < ag <
by < a1 <...<by <a, =1)of type(I}) € {hi, ha} with diam(I7) € [6/]b],20/[b]] and
gaps J7 = [bj, a;], 5 =0,..., N with diam(.J}) € (0,2A/[0]].

Let x : Y — [n,1], withn € [n9,1) bea C ! function as constructed below (as in [, 4]):

o Letp € Py, h € H, forn € Nand write h|, : p — h(p). Set x = Lon Y\ (h1(p) Uha(p)).

e On hy(p) we require that x(h1(y)) = n for all y lying in the middle third of an interval of
type hy and that x(hq(y)) = 1 for all y not lying in an interval of type h;.

e On hy(p) we require that x(ha(y)) = n for all y lying in the middle third of an interval of
type ho and that x(ha(y)) = 1 for all y not lying in an interval of type hs.

Since diam(I}) > 4/[b|, we can choose x to be C*' with [y/| < w where P =

min,,—1 2{inf |h,|}. From here on we choose 7 € [, 1) sufficiently close to 1 so that |x/| < |b].
Since p € Py, is arbitrary in the statement of Lemma 6.1 and the construction of x above, we
obtain

Corollary 6.2. Let 0, A be as in Lemma 6.1. Let |b| > 47/ D and (u,v) € Cy. Let x = x (b, u, v)
be the C* function described above. Then |L™v(y)| < L7 (xu)(y), forall s = o +ib, |o| < €
andally €Y.

The following intervals I” and J? are constructed as in [, 4]. Let [P = Ué\’:_olf jp , where [ jp
denotes the middle third of I ]’7 Let J ; be the interval consisting of .J; together with the rightmost

third of 77, and the leftmost third of I7. Define J§ and J) with the obvious modifications.
By construction, diam(ff) > %I%\ and diam(jf) > (5 + 2A)%. Hence, there is a constant

0’ =6/(46+6A) > 0 (independent of b) such that diam(ff) > 6’diam(jj1.’) forj=0,...,N—1.

Proposition 6.3. Suppose that w is a positive function with iﬁ?:;u < M for some M > 0. Then
J3o wdLeb > 8" [;, wdLeb, where 6" = (2M)~'§'.

Proof. Compute that

/deeb > Leb(f]’-’)infwZM_lé’Leb(jf)supw
I p p

= 26"Leb(J?)infw > 25" / w dLeb.
p jf
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Here the factor 2 takes care of the intervals j(’)’ and J;ﬂv . O

7 Invariance of the cone

Recall that the cone C;, was defined in (6.1). The main result of this section is:

Lemma 7.1. Assume |b| > 2. Then Cy is invariant under (u,v) > (L2 (xu), L20v), where
x = x(b,u,v) € C1(Y') comes from Corollary 6.2.

Proof. Since yu > nu > 0 and L, is a positive operator we have £ (xu) > 0. The condi-
tion [£70v| < L7 (xu) follows from Corollary 6.2. In what follows we check the other cone
conditions for the pair (£ (xu), L70v).

For simplicity of exposition, we assume that ny = 2¢k for some ¢ > 1. We will start with
invariance of the exponential jump-size and oscillation conditions under (u,v) — (L2u, L)
for a smaller exponent n = 2k. Iterating this, we get to the required exponent ny. Hence define

(ul, Ul) = (‘Eguv Z?U)
<u2> U2) = (Egul’ E?UI)
(Uq—la ”q—l) = (Zguq—% E?”q—2)
(ug,vq) = (@uqm ngqfl) = (EZDU»EZOU)‘

Since |v| < w, this construction shows that |[v| < w for all 1 < ¢ < ¢. We will now show
by induction that (u;, v;) satisfies (4.4) and Oscyv; < Cip|b|Leb(I) sup; u; + CsEr(u;) for all
1< <q.

The ‘exponential decrease of jump-sizes’ condition in C,. Without loss of generality we
can refine (if needed) the partition Py, such that

CholblLeb([&i-1,&]) < 3, (7.1)

for all 4. Then the oscillation condition applied to (u, v = u) combined with (7.1) and the fact that

Er(u) < {5 sup, u give sup, u — inf, u = Oscpu < (2 + 75) sup,, u. Therefore Si‘ilf”;“l: < 4 for
each p € Py. The invariance of the exponential jump-size condition follows by Proposition 5.3,
that is: the pair (L7u, £7v) satisfies (4.4) as well.

The ‘oscillation’ condition in C,. For the invariance of the oscillation condition, we need to
verify

Oscy (L) < Cho|b|Leb(I) sup(L7u)(z) + CsEr(Llu).
xzel
For this purpose, we split Osc;(£7v) into a sum of jump-sizes at non-onto branches (i.e., ddom(h)N
I° # (), corresponding to the “created” discontinuities), and a sum of onto branches (which in-
cludes “propagated” discontinuities). Because of (4.2), this gives the following:
Osc(£m™v) < 3 Size (\h’\eswh(f) M) (ddom(h) N I°)
REH,0dom(h)NI° D Ao o

o h
+ > OSCI(|hI|68L‘0"Oh(f/\#>
h€H, ,dom(h)NI°H#D o’fO’
= Ol + 02.

For the term O; we use Proposition 5.3, and recall that I C p, so each created discontinuity x in
this sum belong to X ]’ for some k£ < j < n. We obtain

01<Cq Z P Y Lou(a), (7.2)

Jj=k+1 zeXjnI°

13
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which contributes to E7 (L (xu)).

Now for the sum O (concerning the interiors of dom(h), h € H,), we decompose the
summands into five parts, according to the five factors |h’|, e*?°", f, o h, 1/f, and v o h of
which the oscillations have to be estimated. The estimates for this five parts are as follows.

The term with |h/|. For each h € H,, wehave 1 = h'o F™ - (F"™) and 0 = h" o F™ - ((F")")? +
h' o F™ . (F™)". Using Adler’s condition (2.2) for the branches of F™,

[(F™)" o h(&)]
[(F™™)" o h(£)[?

foreachn > 1 and £ € a € o”. Hence by the Mean Value Theorem,

|h"(€)| = R'(©)] < CLIW (€)] (7.3)

Oscyo (|']) < Leb(I)|R”(€)] < C1Leb(I)|R'(€)| < C1eC Leb(I) Jof 1 (z)].
redom N

Summing over all h € H,, with dom(h) N I° # ), we get

o h 3
> Oscre(|W])  sup erenon(z) o |V]) © hlz) < Cre“1Leb(I) sup(Lu)(z).
vl w€dom(h)NI° Ao fo(@) eel
dom(h)NI°#(
(7.4)
The term with ¢*#7°". Write ¢,,(z) = 7" p o Fi(z) and h = hy, o hy_10---0hy € H,
where h; € H; for 1 < j < n. Then by (2.3)

n—1 n—1
[(enoh) <Y |(pohnjoF ™ oh)|=> [(@ohn ;)| [(F* oh)|
=0 =0
S _m-(+1) _ Cop
<Oy Sn=@H) o 2200 o (7.5)
jgopo oo — 1 2

apnoh(x) ’ ’
By the Mean Value Theorem =&y < @7 (¢noh) (Lebl) < ¢=C2. Therefore
ve '

Oscro (€7#7°") = |s]e”#"°MO| (¢, o h)'(€)|Leb(1)
! opnoh(x)
SUPgzer € v : opnoh(x) !
s (el inf ey eoPnoh(z) ;réfl € ilg;(('o" oh) (@)

< (1+2)e"%Cs[blLeb(T) inf ¢7#n"(®),
xrE

Summing over all i € H,, with dom(h) N I° # (), this gives

S Oscr(@® ) sup  [w(a)| Lol R)
heHn z€dom(h)NI° A2 fo ()
dom(h)NI°#£D
< (14 €)e=2Ch|b[Leb(I) sup(Llu)(x). (7.6)
xzecl

The term with f, o h. Applying Lemma 5.1, part 2 to f, o h we find

Oscyo(fy o h) < CgLleb(h(I)) zei%{I) Jo(x) + CrEpry(fo)- 1.7)
For an arbitrary h € H,,, the first term in (7.7), multiplied by SUP, cdom(h)N1° [W (2)] |es‘9"°h(I) | %

is bounded by

h(zx)
CoLeb(h(I)) sup  |W(z)[ersnchte) o) 0 hl@)
sheviht ))redom<113>m°| @)l A2 fo ()
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Summing over all i € H,, with dom(h) N I° # ) gives

o h — ~

Y Celeb(h(I)) sup () erenon(@ JW o P& o0 onp b 1y G (Fmu) ().

hetn x€dom(h)NI° )‘gfa(x) zel
dom(h)NI°#D

(7.8)

The second term in (7.7) is a sum over propagated discontinuities 2 € I°, and for each = we let
h € H,, be the inverse branch such that f, has a discontinuity at y = h(x), and j > k is such
that z € X7. By Lemma 5.1 the term in Ej,(y)(f-) related to y is bounded by Crp=3U=) f_(y).
Multiplied by |1/ (2)| |es#=°h(®) | % v thEig , and using (5.2) to obtain an upper bound for uoh(z) =
u(y), this gives

C7 7! op oh |U| ° h( ) C17 —3n (fg‘u) ] iL(l’)
_r n wienir) -
p3(j7n) fo(y)|h' (x)] e Nfo(n) pg(jfn)p N o (o)
e s L AL — )

inf f, inful, p*CoLeb(p)

Since Sufc’““” < 4, the bound on Leb(p) in (2.5) gives 5=b ’Jf" ?2?5": - CgLeb(p) < 1. Hence,

summing over all propagated discontinuities = € I° and corresponding branches, we get

GY Y @l et B <o S Y L

j>nzeXinIe ji>n zEX NI
: (7.9)
which contributes to E(L2uw).
The term with 1/f,. Applying Lemma 5.1, part 2. to f, o h we find
Oscro(1/f5) < Cgleb(I) i%{]) 1/fs(z) + CrEr(1/ f5). (7.10)
xeh

PST) spnoh(x - |v])oh(x
For h € H,,, the first term of (7.10), multiplied by Sup, cqom(n)nre |7 (2)] [€*#" h(z)| %
is bounded by

fou) o h(z)
CgLeb(I sup B (x e”w"oh(ﬁ)(i.
¢ ( )acedom(h)ﬁlO | ( )| /\gfa(x)

Summing over all h € H,, with dom(h) N I° # ) gives

o h A
> Csleb(I) sup |h'(g[;)|@G%°h<%>M < CgLeb(I) sup(£lu)(zx).
el w€dom(h)NI° Mg fo(x zel
dom(h)NI°#0
(7.11)
The second term of (7.10) is a sum over propagated discontinuities z € I°. Take j > k such

that z € X. Lemma 5.1 gives that the term in E related to x is bounded by C7p~% / fo ().
Multiplying with |/ ()] |e7#n°h(®)| 0‘0“;73”(” and then summing over all z € U;~; XN I° and
h € H,, with x € dom(h) gives

C7Zp_3j Z |h/(x)|eos0noh(;v (f;nf < C?ZP Z nu)(m)7 (7.12)

>k zGX;ﬂIO >k mGX’ﬂIO

which contributes to E7(Lu).
The term with v. Using the cone condition for v, we obtain

OSC[o (U o h) < CloLeb(h(I))|b| sup U(LL') + CgEh([) (u)
xeh(T)

—nSUP Uln(1)

< po" ClOLeb( ) |b] xei%fl)u(x)—i—C’gEh([)(u). (7.13)

inf wp (s
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For h € H,,, the first term of (7.13), multiplied by Sup,,cgom(nynre [P ()] |32 ()| fzjchg)), is
bounded by

- (fou) o h(z)
4pq " C1o|b|Leb( sup W (2)|eo¥noh(@) Wa™) = )
0 10' | ( )acedom(h)ﬁIO | ( )‘ /\gfa(x)

Summing over all i € H,, with dom(h) N I° # () gives

4C oo oh(z) (fou) o h(z 4C n
> Cienn) swp  pa)fererr @ U2 < B0 ey sup(£pu) o)

hetin Po x€dom(h)NI® oJo\T 0 zel
dom(h)NI°#D

(7.14)
The second term of (7.13) is a sum over propagated discontinuities x € I°. For each such = we
let . € H,, be the inverse branch such that v has a discontinuity at y = h( ), and j is such that
r € X;.
Case a: Assume that j —n > k. Since u has exponentially decreasing jump-sizes, we get that the

term in Ey, ) related to y is bounded by C7p~U~™)u(y). After multiplying by W ()] |eW"OE(’3) | I"f}h((g ,

and using (5.2) for an upper bound of u o h(z) = u(y), we have

—~(j=n) 1] goenoh(@) fe O 1) (=) j-an fo¥ )O
Crp u(y)|h' (z)| e TACEE Crp~ e
_;sup fo supul, 1 5
< J n
S G, Tatal, pFCoLeb(p) S )

h(z)
)

< %p-fﬁzum,

supu\p

because 7+ < 4, and using the bound on Leb(p) from (2.5).
Case b: Assume that j — n < k. Then (4.1) doesn’t apply to the term in Ej, () related to y, so

it can only be bounded by u(y). Multiplied by |/ (z)| |es‘/’"°ﬁ(w) {2;2((3’ and using (5.2) for

obtaining an upper bound of u o h(z) = u(y), we have

(| gomon(e) o © () “an (fou) © h(z)

u(y) W (z)] 7% @ S ° ()

2(n—k) SUP fo sup ulp 1 = ()
inf f, inful, p*CoLeb(p ) 7

1
< —] C”
C’S (@),

<

because S22 ““’J < 4, and using the bound on Leb(p) from (2.5). Hence, summing over all propa-

gated discontinuities x € I° and corresponding branches, we get

=) £ (2)] eoneh@ PO E@)  C7 s £
C7§zxe;710 )| v )‘ )\gfg(lf) C ng IG;UO

B (7.15)
which contributes to E7(L7w). This completes the treatment of the five terms.
Combining terms (7.4), (7.6), (7.8), (7.11) and (7.14), the oscillation part is bounded by

(C’lecl + (1 +8)|ble=C2Ch + (1 + pg™)Cs + 4010;)5") Leb (1) sup(£7u)
I

and by the choice of Cyq in Subsection 2.7, this is less than C'|b|Leb(I)ng sup; (L%u) whenever
[b] > 2.
Recall Cg = 3C7 /no. Combining (7.2), (7.9), (7.12) and (7.15), the jump part is bounded by

3C7Er(L™u) < CsnoEr(L ).
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This concludes the induction step, proving that

Oscyo (L£M00)

IA

C1070|b[Leb(I) S‘}P(EZOU) + CsnoEr(Lrou)

IN

Cio|b|Leb(1) St}p(ﬁZO(XU)) + Cs B (L3 (xu))

as required. O

8 Proof of Theorem 2.3

Given Lemma 6.1 and Lemma 7.1, the proof of the L? contraction for functions in C;, goes almost
word by word as the proof of [ 1, Theorem 2.16] with some obvious modifications. We sketch the
argument in Subsection 8.1. In Subsection 8.2 we deal with arbitrary BV observables satisfying
a mild condition via the || ||, norm. In Subsection 8.3, we complete the argument required for the
proof of Theorem 2.3.

8.1 L? contraction for functions in C,

Lemma 8.1. There existe € (0,1) and B € (0,1) such that for allm > 1, s = o + ib,
|b| > max{4n/D, 2},

ol <e,

[ 18zl azeb < 5ol
forall v € BV such that (u,v) for u = cst satisfy condition (4.4) in Definition 4.1.

Proof. Set ug = ||v]|oo, vo = v and for m > 0, define

Um+1 = EZO (X77Lum)7 Um+1 = L ('Um)a

where ., is a function depending on b, u,,, v,,. Since by definition (ug,vg) € Cp, it follows
from Lemma 7.1 that (4, v) € Cp, for all m. Thus, we can construct ., := X(b, Um, Vm)
inductively as in Corollary 6.2.

As in [1, 4], it is enough to show that there exists 5 € (0,1) such that [u2 _, dLeb <

B [ u2, dLeb for all m > 0. Then |L7"0v| = |L7"0vg| = |vy,| < ty, and thus,

/|ﬁgﬂ"0v|2dLeb < /ufndLeb < gm /ug dLeb = 5™ |[v]|2,

as required.

Let [P , JP be as constructed before the statement of Proposition 6.3 and note that Y =
(U,I7) U (U, JP). Proceeding as in the proof of [1, Lemma 2.13] (which relies on the use of
the Cauchy-Schwartz inequality), we obtain that there exists 7; < 1 such that for any p € Py,

5 Loy (Lhoud ) (y) ify € IP,
o @) < {f(o)(ﬁgﬂufn)(m ify € J7,

where £(0) = A %" sup,,(fo/ fo) sup,(f2o/ fo) sup,(fo/ fo) sup,(fo/ for)-
Since (U, vm) € Cp, we have, in particular, that for any p € Py, SUp,, Um — infy Uy, <
< 16. Hence,

“ 2
Sup,, U,
: 2
inf, u2,

Sup,, Um
> inf, wupm,

Oscpu < (% + 1—12) sup,, uy, and thus < 4. Similarly,

sup, £3° (12 $uPy Lnepeny I11(J0 0 B) (02, 0 )/ o
inf, £5°(u2,)  infp Zhe?—two IW|(fo 0 h)(ug, o h)/ fo
sup, fo ) 2 sup, Ehe’i—(no W]

inf,, fo inf, Zhe?—tno ||

< 16(
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5 ; 2 sup, 3 |h'] . ...
Letw := L(u2,),set M := 16( Frz Jo )" Z0r Zherng ' and note that w satisfies the conditions
m inf,, fo inf, ZhEHnO |R'|

of Proposition 6.3 for such M. For any p € Py, it follows that [ 7» wdLeb > §" / j» wdLeb and

thus,
/ w dLeb > 6" / w dLeb.
UplP UpJP

From here on the argument goes word by word as the argument used at the end of the proof of [1,

Theorem 2.16]. We provide it here for completeness. Let 3/ = 1;3’:(1;5;," < 1. Then §" = 51,*_/137'1
and thus, (8" — 1) fupip wdLeb > (1 -3 fupjp w dLeb. Since also Y = (U,I?) U (U, JP),

we obtain 7, [, j, wdLeb+ [ ;, wdLeb < j’ [|, wdLeb. Putting the above together,

[ wtraied <o) (m |

Up

<€) [ £ i) dled = g()9 [ ut, dLeb.

w dLeb + / w dLeb)
ir UpJP

To conclude, recall that by Remark 3.2, if necessary, we can shrink ¢ such that 8 := £(0)8’ < 1
forall |o] < e. O

8.2 Dealing with arbitrary BV observables via the || ||, norm

The cone Cp represents only a specific class of BV observables, namely with discontinuities
of prescribed size and location. It is, in fact, the smallest Banach space that is invariant under
(u,v) — (Lyu, L4v) and contains all continuous BV functions.

In this section we are concerned with the behaviour of £~’S’ acting on BV functions satisfying
a certain mild condition (less restrictive than belonging to Cp). To phrase such a condition we let
C11 be a positive constant such that

Ci1 = 64(1 + c)2<

Supfg>2 sup fao (Supfa supf0>27 @.1)

inf f, inf fo, \ inf f, inf fj

where c is the constant in the statement of Proposition 3.5. We use the following hypothesis:

{Val'y’U < Cra|b]2p™™||v||1 ifo 20, (Ho,m)

Vary (e7¥mnov) < Cpq|b|2pmmo||e?mnon||;  if o < 0.

The next result, Proposition 8.2, says that for v € BV(Y’) such that if (H, ,,), then E:v is
exponentially close to the cone Cp in || ||oo, because jumps-sizes of discontinuities of v outside
X die out at an exponential rate and are not newly created by the dynamics of F'.

Proposition 8.2. There exists € € (0,1) such that forall s = o+ib, |o| < &, |b| > max{4nr/D, 2},
and all v € BV(Y") such that (H, ,,,) holds for some m > 1, there exists a pair (Wmng, Wmn,) €
Cy such that

H/j?symﬂv — Winng loo < 2C10 p~ ™" [b][|[v]lcc and ||wimng oo < [|V]0o-

The above result will allow us to prove

Lemma 8.3. There exist ¢ € (0,1) and 8 € (0,1) such that for all s = o + ib, |o| < ¢,
|b| > max{4n/D, 1} and for all m > 1,

| £5m ]y < (1 [b])~ Vary (£37700) + (2C10p™ ™0 1b] + 5™ o]

forallv € BV(Y') satisfying (H, ).
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Proof of Proposition 8.2. Let v € BV(Y') be arbitrary and take r = mmny (this is a multiple of k
because ng is). Write g, = L7v and g, = L7 |v|; for every fixed b € R, they belong to BV(Y) as
well by Proposition 3.5. Therefore g, has at most countably many discontinuity points, which we
denote by {z;};en. Assume throughout this proof that g, is continuous from the right; this can
be achieved by adjusting g, at {x; };en, so it has no effect on the LP-norm for any p € [1, x].
To estimate the jump-size |a;| of g, at z; € X for some j < , we note that this discontinuity
is created by non-onto branches of F", and there exist y € X and an inverse branch heH j—1
such that y; = iz(xz) The jump-size of ZZU at z; can be expressed as a sum of h € H,_(;_1)

which in the summand is composed with h. Then

(fav> oho E(Iz)
)\(T,fg(l‘i)

Size Lv(a) < Y [(hoh) (ay)] [er¢r-u-nehehtetapiio(r)

heH,—(j-1)

= Z 1 (ys)] e Pr—(i-1°h(y:) (fav)Oh(yz) |iLl(x1)| oo i—10h(z:) f(lf(yz)

heH A9 fo () N fo (i)

. v oo h(y:) _3(j—1) SUP fo

< Z I (y:)) eTPr—(i—1)°h(yi) S 0]l p -1 22 Jo

(hEHn(]-n AU l)fa(yi)) inf f,

sup fo _3;

< [[vllos p° Wi f. 5. (8.2)

where the sum in brackets in the penultimate line is 1 because f, is an eigenfunction of L.

For r > k, let ), be an interval partition of Y refining P, such that %p_’“ < Leb(I,) < 2p™"
for every I, € @,. In fact, by adjusting @, by an arbitrary small amount if necessary, we can
assume that g,. and g, are continuous at every point in 9I,. \ X, I, € Q,.. Construct w,. and wu,.
to be affine on each (p, ¢) = I, € @, such that

limw,(z) =limg,(x) and limw,(x)=limg,(z)
zlp zlp zTq zTq

and similarly

limu,(z) =limg,.(z) and limu,(z)=limg,(x).
zlp zlp zTq zTq

Then w, and u, are continuous on Y\ X, and as g, > |g.|, it is immediate that u,, > |w,.|on Y.
The main estimate now concerns the oscillation
esngoh ‘ h/‘

W(fUU)Oh for I, € Q,,

Oscy, g = Oscy,. E
h€H,., I, Cdom(h)

which we will split into five terms similar to the proof of the invariance of the cone.
The term with |7’ is bounded above by Cye“ Leb(I,.) sup,¢;. Ll |v] as in (7.4).
The term with e5¥7°" is bounded above by (1+|o])e?C2C4|b|Leb(I,.) SUD,ey, Ll |v| asin (7.6).
The term with 1/ f, is bounded above, by combining (7.11) and (7.12), by
CoLeb(I,) sup L] [v] + CrLeb(1,) > p~7 > Lyv|().
o€l i>r weX)nl,

-7

Here the second term is bounded by C7 N1 £— sup,.¢, Lr|v| < 2C;
where we recall that #X; < Nj forall j > 1.

pj\ill Leb(I;) sup,ey, Lo|v],

The term with f, o h is bounded above, by combining (7.8) and (7.9) and arguing as in the
previous case, by

pP— x€l,

Copy"Leb(1) sup L3Jo+Cr 327 D £5fol(x) < (Copy” +2C7
xel,

j>r mGX;ﬂIT

N 1)Leb(l}) sup L7 |v].
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The term with v o h: First we treat the case ¢ > 0. By Lemma C.2 (which also gives a lower
bound rq for r)

K
lollx < / |v| dLeb  forall I, € Q,,
7 Leb(L,) Jrrqr,)

where K7 = 6“1 /n. Recall that (H, ,,,) holds with C7; > 1 as defined in (8.1). Compute that

sproh hl
Z (fgg |€ >\Z;f<|7| |fo' o h) OSC[T (U o h) < P_?W Sllrilf)}f: Z OSCh(IT)v
heH heHr
I,Cdom(h) I,-Cdom(h)
- Tsup f‘T r sup fo'
<p3 7 Varp—r(7,yv < 2p~ *"Leb(I,)~ Ny Vary v
< 272" Leb(I, )S pf" Ci1|b|2p / |v| dLeb
2 —r sup fa
<201 |b|"Kip™" - / |v| dLeb
inf fo Jp-r (1)
sup fo |P]
<2C11|b|*K1p™" < > fo|v]) o hdLeb.
wbPEe (S) X,
I,.Cdom(h)
Because 0 > 0, we can continue as
sproh h/
Z ( sup %ﬁ, o h)OscIT(v oh)
heH, IGIT o‘fo'
I,.Cdom(h)
2 e’ oh /
— sup fa #r |h
<200 |bPK1p "L & h dLeb
= 11\ | 1P o (inffc,> }; / f |v|)0 e
I,.Cdom(h)

<200 bPK1p 7N, (S“p / ) Leb(7,) sup Lo}

inffa z€l,

Since p > A, we obtain the upper bound Leb([,.) sup,.c;. L’ |v] by taking r sufficiently large.

Now we treat the case 0 < 0. By Lemma C.2 applied to e’¥"v (and with the same lower
bound r( for r as before)

K,
le”?ru; < / |e??rv|dLeb forall I, € Q,.
Leb(I,) Jp-r(1,)

Note that

sproh h!
3 <sup 6)\;f(|7|fg ° h> Oscy, (v o h)

heH z€lr
I,.Cdom(h)
<2 Z sup ] fooh ) Oscy.((e7%v) o h)
xEl, AT fU
heHy
I, Cdom(h)

SeeC;/\U Su?;a —r
m

Oscy, ((e77v) o h).
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Estimating the oscillation as in the case ¢ > 0, and using (/,,,,), we find the upper bound

sppoh h
Z (sup wﬁ, o h) Oscy, (voh)
hety xz€l, )‘gfo
I,.Cdom(h)
2 Ucp,oh h/
< 26Oy 2K p = (SRS / T o) o e
< 2e7201|b["Kp nf [, Z N T, (folv|) o e
heHr
I,.Cdom(h)

Leb(I,.) sup £ |v].
xzel,

2
) eC} b 2K —3r ( SUP fa
e Culbl Kap (mf fs

By taking r sufficiently large, we obtain again the upper bound Leb(,.) sup,¢ ;. L7 |v], and this
finishes the case o < 0.
Putting all terms together,

Oscy,gr < Cho|b| Leb(I,.) sup L% |v], (8.3)
I

and since w, is an affine interpolation of g,., with the same limit values at all points z; € X,

- = wrll < Crolbl Leb(Z,) sup £ o] < 2C10fblo ™" o

Also, since w;- is an affine interpolation of g, we have ||w,|| < ||gr|lco < ||V]]0o-

We still need to complete the argument why (u,., w,) € Cp. By (8.3), the affine function w; |1,
has slope C19|b|sup;_ Ll v = Ciolb| sup;_|u,|. This means that for every subinterval I C I,
we also have

Oscrw, < Cyolb|Leb(I) sup ..
I

If on the other hand, [ intersects several contiguous I,- € ), (but is contained in an atom of Py),
then we have to include the jump-sizes of discontinuity points at 0, as well. But since ), refines
P, and g, is continuous at all boundary points ¢ € 91, \ X, and the jump-sizes of g, and w,
coincide at every x; € X ; (and decrease exponentially in j by (8.2)) we conclude that

Oscrw, < Cyg|b|Leb(I) sup u, + CsEr(uy).
I

This shows that (u,., w,) € Cp, as required. O

Proof of Lemma 8.3. Form > 11let (Wyng, Umn,) € Cp be as in the statement of Proposition 8.2.
Let v € BV. Using the definition of || ||, norm,

IEZ™ 0]y = (14 b))~ Vary (C3""0) + [[£™" 00y
< (L4 [b) ™ Vary (L3m00) + [[L2™7 (L7700 — Winng) 1 + |20 wnl |1
< (L4 [B) M Vary (£3™00) +2C10p™ "™ ][0l o0 + B [ Winng lloc

where in the last inequality we have used Proposition 8.2 and Lemma 8.1. The conclusion follows
since || Wimng |loo < ||V|loo (as in the statement of Proposition 8.2). O

8.3 Completing the argument

In this section we complete the proof of Theorem 2.3 via a couple of lemmas.

Lemma 8.4. There existe € (0,1), A > 0and v, € (0,1) such that for all
|b| > max{4n/D,2} and for all m > Alog( ),

1£Zm vy < A3 [olls

forallv € BV(Y') satisfying (Hy ).
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Proof. First, we estimate (1 + |b|)~Vary (£3™"0v). For m € N, recall from Proposition 8.2 and
Lemma 8.1 that

I£2mm vy 1L (L7700 — winng )11 + 1£3" Wamo |1

<
< ||£~;rmo (ﬁ;ﬂnov — Wimnp)lloo + B [[Wmng |l
< 2C10p" " |[]loo + B™|][oo < 48™[1V]|oo

where we used Cpp~ """ < 25™. By Proposition 3.5 (which is allowed since ng is a multiple
of k) and recalling that A, := /\éf /As > 1, we compute

Vary (£3""00) < p~™"0 Vary (£27"00) + e(1 + [B)AZ" (| 37" wl|y [|£37"0]o0)
< p~ " Vary (L27"00) + 2¢(1 + [B)AZ" B2 0|

< p MM Vary (L2™0v) + 2¢(1 + [b))AZ B2 (Varyv + [[v]1). (8.4)
where in the last inequality we have used ||v||so < Varyv + ||v]|1. Also by Proposition 3.5,
Vary (£2™00) < p~ 2™ Varyv + ¢(1 + [b]) A2 ||v]| oo
< p 2™ Vary v + (1 + [b]) AZ™"0 (Vary v + |[v]]1).
Plugging the above inequality into (8.4) we get

Vary (£27"00) < p3™0 Vary v+ (1 + [B]) (o770 AZ™™0 4 2470 B™/2) (Vary v + [Ju]]1)-

Multiplying this (1+|b|) ~* and inserting it in Lemma 8.3 (which relies on the assumption (H, ,,,))
gives

L3 v]ly < (14 [b]) ™ o™ Vary v + c(p= ™" AT + 2070 5™/%) (Vary v + [[v])1)
+ (2C10p™ ™" |b| + B™)(Varyv + ||v]|1).
Hence,
128wl < (1 ) (575" + (1 -+ bl) A2
+ 2cAT0 B2 4 2C o |blpT ™ 4 Bm))Varyv
+ (CAgmnop—mno + QCA;""Oﬁm/Q + 2C0[blp™™" + B™)||v|I1

< (14 [B1)*(2C10 + ) (AZ770 =710 4 AT 57/ 2) ]|

Let A > 0 be so large that y; := max{Ai”Opfl,AZOBUQ}eXp(W) < 1. Then (1 +
b])2(2C10+c) (AZmmo p=mno 4 Ao 3m/2) < ' for all m > Alog(14]b|), and the conclusion
follows. O

To complete the proof of Theorem 2.3 we still need to deal with BV functions violating
(Ho,m)-

Lemma 8.5. There exist ¢ € (0,1) and 72 € (0,1) such that for all s = o + ib,
|b| > max{4n/D,2} and for all m > 1,

ol < ¢

L7 0v]lp < 75 [[v]ly
forallv € BV(Y) violating (H,.,).

Proof. By continuity in o, 1 < A, < p'/2 for all |o| sufficiently small. Then clearly also o :=
A0 p~m0/2 < 1. We first treat the case ¢ > 0, so by assumption, Varyv > C11[b|%p""|v]|;.
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Using Proposition 3.5 (which is allowed since n is a multiple of k), we compute that

Vary (£7796) < 5~ Vary v + o(1-+ [B)AZ (o o] )2
< p~ "™ Vary (v) + ¢(1 + |bDAZlnD(||U||1(VaI‘y’U + H’U||1)1/2

—mno —mno

C11|b|?

< p™0Vary (v) + e(1 + |b) A0 ( d

Cr o2

c VB51+ ol
011{2 8 [b]
1 3V A™no —mn0/2

< —mno
="+ 5 16 A

1/2
Varyv (Vary v+ Vary v) )

< p~"™™Varywv +

A'gmo p—mno/ZVarYU

)Vary v,

where we have used C1;|b|? > 64 and abbreviated K := e ]Jf" o ]{0 Therefore

(1 + [b]) " Vary (£m0v) < (1 + b))t ""Vary v

1
1K, V2
for m sufficiently large. By (A.4) at the end of the proof of Proposition 3.5,

Fmn mn, Supfd SUPan 1/2
I125melol I < A7 s 25 (Gp ) el

Note that | £7"0v|[; < ||£7™]v]];. so we have

5 sup fo /sup fogs\1/2 1/2
£z, < Ao S S (U oo )R (e i) o))

inf f, \inf fo,

sup fo /sup fao\1/2 pTmmo pTmno \ 1/2
< A™mo ( ) ( 1 ) \V/
- inf f, \inf fo, ( 011\b|2)011|b|2 ary v
< C p|~LA™To /2y _
~ inf f, \inf fo, ] 11 | | s P ary v

‘ X 1/2 ) .
The choice of C; gives that 37 j:’ (i?ff) ]{22”) < C’lll/ 2 /8K5. Hence, the choice of v, gives

| Loy, < 1 (14 [b]) 143" Varyv. Together, | £mno]|, < 375 (14 [b]) 195" Varyv.
Now if o < 0, then the assumption is Vary (e?mmov) > Cq1|b|?p™"0||e??mmov]|;. The
above computation gives

= su su
7o, < S To P Jo

pmn TPmn 1 -1 _.m
S Targ, i Lo EFov)le < S [B)7y5" (2Vary v+ lvll),

where we have used (since o < 0) that Vary (e?¥mm0v) < Varyv + |[v]|oc < 2Varyv + [Jv]1.
Therefore || L7 ||, < (1 + |b])~*9%*||v||» and this proves the lemma.

Proof of Theorem 2.3. Lete € (0,1) be such that the conclusion of Lemmas 8.4, 8.5 and Propo-
sition 3.5 hold, and take v = max{’yl ,75/2} Let |o| < e,n € Nand v € BV(Y) be arbitrary.
Recall that |b] > max{4w/D, 2}. Let A be the constant used in Lemma 8.4; without loss of gener-
ality, we can assume that A log |b| > 3ng. By the proof of Proposition 3.5 (see also Remark A.1),

there is A’ such that the operator norm

%], < A'(1+ |b|) forall|o| <e,beR,n €N. (8.5)
Take A ;
> 4 18P fo ., . .
n > 2max{n0 log(1+19]) , log(A; it f, A'(1+ b)) (8.6)

Because the contraction in Lemmas 8.4 and 8.5 happen at different time steps, we carry out the
following algorithm:
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1. Let mg € N be maximal such that 3mgng < n.If mg < Alog(1 + |b|), then continue with
Step 4, otherwise continue with Step 2.

2. If v satisfies (., ), then || £3™0™0y||, < ~9™0]|v]|, by Lemma 8.4, and we continue with
Step 4.
If v does not satisfy (Hy ), then ||£70"0v||, < 42™0||v]|, by Lemma 8.5. Let v; =
ﬁTO"OU and let m; € N be maximal such that 3mng < n — mgnyg.

3. If vy satisfies (H,. p, ), then [|£3™17%0y, ||, < 45™0||v]|, by Lemma 8.4. Therefore
ILEmetmoImoy |y = [| L3 0vy [y < A0 orlly = A2 LI 00y < ASTFERO o,

and we continue with Step 4.
If v; does not satisfies (Hy.,,, ), then || L7700, ||, < 2™ ||y |, by Lemma 8.5. Let vy =
£~T1”0v1 and let my € N be maximal such that 3maong < n— (mg+m;1)ng and repeat Step
3. Each time we pass through Step 3, we introduce the next integer m; and v; = L3 0.
As soon as m; < Alog(1 + |b]) we continue with Step 4.

4. Let p = p(v) be the number of times that this algorithm passes through Step 3. Note that
p < oo because each time Step 3 is taken, n — (mg + mq + - - - + m;)ng decreases by a
factor 2/3. Thus we find a sequence (m;)?_, and we can define

(v) = mo+ -+ +mp_1 +3m,, or
m0+...+mp_1+mp7

depending on whether v,_; = — [{mottme-1)no ), catisfies (Hg,m,_,) or not. In either case

we have n — M,ng < Alog(1 + |b|) and ||£~iw‘”""v||l7 < 2o vy,
By (8.5), we have for all v € BV(Y)
I£30lly = L2 (LYmow)ly < [[L37Memoly L3 wlly < A'(L+ (B> [o]o-

Also || L7l < A1 Slﬁfplf” | £7v]|p. Therefore, using n — M,ny < Alog |b],

n _18up Jo
leols < A7 RIS B ol

— bup [ — o, n n
< AT AL )y A

_ bupfa n —Alo no.-n/2 .mn n
At A1+ [b])y™/2 (AL D /mogn/Z an iy ||, < 4oy,
inf f,

since n is chosen large enough as in (8.6). This completes the proof. O

A Proof of Proposition 3.5

Proof of Proposition 3.5. Fix k and ¢ such that the assumptions of the proposition hold. First, we
provide the argument for n = k; the conclusion for n a multiple of k£ will follow by a standard
iteration argument. We note that for each a € o* the interval F*(a) = [p,, q4] is the domain of
an inverse branch h € Hjy, which is a contracting diffeomorphism.

Compute that
Vary £Fy < Ai,;mflfa (h;kewwhh’ (fo0 )oh) v Var( )H Z 2R ! |(£,0) ohH
< gV X el on) ()| 3 S—
heHs 7 he€H}
< )%Var(ﬁk(fgv)) +Var<f >supf0/ﬁ’;|v|dLeb, (A1)
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where we abbreviated () := mf 7+ Var( 7o )

We estimate the first term in the above equation. Since v € BV(Y'), v is differentiable
Lebesgue-a.e. on Y and we let dv denote the generalized derivative; so, for [p, ¢q] C Y, we have
Vary (1, qv) < f; |[dv| 4 |v(p)| + |v(q)| (see, for instance, [9]).

(cmeven W[ (fv) o 1)

\: Var ([Zk fov) Z /do

k
heHy m(h) )\G
e Rl alol) 0B e (Sl o
+ N (pa) + \E (Qa))
essakOh‘h"(fUU) oh
<2 / \d ‘
hEZHk dom(h) ( A]é )
s¢koh(m) h'
Y B L B R AE
hetHy, [PaaQQ] )\‘7

First, by the finite image property, ¢y := min,cq«(¢a — Pa) > 0 for our fixed k. Therefore

ogproh(x)|p! ~
Jo < - / : W) fol]) 0 hl) o 200 fo / L5 v| dLeb.
Fk(a) C Y

3 k
MmN eqk (Qa 7pa) heEH, )‘g

We split the term J; in (A.2) into three terms

e* Pt 1| (fov) o h
d ‘ <L+IL+13
/dom(h) ‘ ( /\(l; ) '

heH

corresponding to which factor o the derivative is taken of.

£ €k D |(fov)0h
A&
For I,: Taking m = k in (7.5)

7k (op o h)' 1| (fo|v]) o h

I :=|o + ib] / dLeb
hEZHk dom(h) Alé

<C%le + b| supfc,/ L |v| dLeb.
1%

For I5: Taking n = k in (7.3),

oproh ! L ~
L=Y / e | IifJIUI)o dLebSC’lsupr/ £E|v| dLeb.
et * dom(h) Ao v
k

For I3: Due to (3.3) and using a change of coordinates,

ls= Z Aom(h)

heHy,

o'gokoh h/ Qd - h
| Lk(f o ‘dLeb<p3kZ/|dfg )| dLeb
g heH

p_%/ |d(fov)| dLeb = p~**Vary (f,v) < p~** sup f, Varyv + p~**Vary f|v]| s
Y

< p~*(sup f, + Vary f,)Varyv + p_BkVarny/ |v|dLeb,
v
where in the last inequality we have used ||v|| < Varyv + [ |v|dLeb. Putting these together,
1 _
)\—kVar(Lk(fov)) < p~3F(sup f, + Vary f,)Varyv

+ p*SkVarny/ |v|dLeb + (¢1 + C4|b]) sup fg/ L |v|dLeb,
Y Y
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where ¢; = 2051 + C + Cle and C} is as in (7.5). This together with (A.1) implies that
Varyﬁls“v < p‘ng(sup fo + Vary f,)Varyv + p‘3kVarny/ |v| dLeb

1
+(cl+Var(f )+02|b\ supfg/ £*[v|dLeb.

Given our choice of €, ¢y := Var( ) < 00.By (2.7), ¢ := p~2*Q(sup f, + Vary f,) < 1 and
p~3*Vary f, < 1. Therefore

Vary Lfv < p~FVaryv + / |v|dLeb + (c1 + 2 + C|b]) sup fa/ LEv|dLeb.  (A3)
Y Y
For n > 1 arbitrary, we estimate fY Egk |v|dLeb applying Cauchy-Schwartz. First, note that

. . 1/2
/cgdeeb < (/(ﬁgmn?dLeb)
Y Y

Recall that A, =

Ji@zlraes = [owta) (X eene gl on) dues

h€Hnk

= / SIS (6"“"””“°h|h’\1/2(faIvl)WOh)(lh’\w(falvl)mOh))QdLeb

heH nk

<Gt 270 [ (30 et (fuloly o k) (S0 Wl o ) deb

h€Hnik h€H nk

n Supfo QSuprU e20#nk
<A Car ) s IIvlloo/( > Ihlfggoh)( S° [Wllel o h)dLeb

heH ni h€H nk

A2nk (SUP fo) sup fas

= o inffo- info || ||00||UH1

Thus,

~nk nk Sup fD’ Sup f20' 1/2 1/2
dLeb < A s . A4
| Extivlanes < Az Sede (FRE) T (ol ol (A4)

The above together with (A.3) implies that

Vary L0 < p~*Vary L8 F0 + (14 ¢1 + ¢ + Ca|b)) A" st;?}fv (SUPJ{%) ([vlloolvfl)*/?

< p M Vary L850 + ea(1+ [B)AZ (oo 0]l 72, (A5)

1/2
for ¢ := max{1+ 1 + ca, C} 3242 ($22f22 ) . lterating (A.5), we obtain that

Vary L0 < p~ ™ Varyv 4 ¢(1 + [b)) A2 (||v]| o [|v]]1) /2,
for any n > 1, where ¢ := c3sup f, Z?;Ol (pA,)~7*. This ends the proof. O

Remark A.1. A similar, but much more simplified, argument to the one used in the proof of
Proposition 3.5 shows that the non-normalized twisted transfer operator satisfies Vary (L?v) <
c1pg “Varyv + c2(1 4 [b])||v]| oo, for all n > 1, some pg > 1, c1,¢2 > 0, forall b € R and all
lo| < e, foranye € (0,1).

Remark A.2. If o = 0, so when working on the imaginary axis, we can get the standard Lasota-
Yorke inequality Vary L v < p~"Varyv + c4(1 + |b])||v]1.
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Proof of Proposition 3.1. Take ¢ = 2. Without loss of generality, set 0 < |oa| < |o1| < € and
take b € R,

utor it = Lol = [ |3 (elrrvimest - elossbaean)atlo o ) dLep
Y lhen
< ||v||oo/ Z e71oh B ( 6(02’”2)W°h> dLeb.

heH

Because the function z + e~ (5079177 assumes its maximum value e~!(sg — o)~ at x =
0
(g0 — o)™, we have

efopoh
eal<,ooh (1 _ 6(02702)@oh) < esoapoh ol — 0,2|ef(sofcrl)<poh<p oh < ]
- ~ e(eg — o)
Plugging this into the above, we find
/ o‘1<,00h _ e"%"oh)\h’\vohdLeb < H oo / Z EWOh|h'|dLeb < C3HU||oo .
Y hE’H 50 - U Y hen (E() - U)

To estimate Vary (L5, 4ip, v — E(Uﬁibzv), we work as in the Proof of Proposition 3.5, and use
the above estimate on the L'-norm. As such we obtain

Vary (Lo, +ib, ¥ — Loatib,v) < |01 — 02]eg  (C'Vary v + C”|[v]| o) < Cloy — a2leg H[v]By

for some C' > 0 as required. O

B Proofs of Lemmas 5.1 and 5.2

Proof of Lemma 5.1. Recall that f, is an eigenfunction for the non-normalized twisted transfer
operator L, SO )%EZ; fo(z) = fo(x) for every r € N and x € Y. Therefore, for r € N arbitrary,
we have

— L1 — i ’ oproh(z)
Arﬁ @) = % Yoo W@
heM,.,x€dom(h)
S W@ o) sl sy

= AT fo(x) inf f, — inf f,

(B.1)
heH, ,x€dom(h)

for all z € Y, and similarly <L-£71(z) > ‘Ei)f < . Hence the Cesaro means converge to the fixed

point with unit L'-norm:

n—1
T _ fO’
B Z Lol =177, died

If £ ¢ X, then £71 is continuous at = for all » € N, and so is f,. Now for z € XJ’» take
r > j. The discontinuity of £ 1 atx € X J/ is created by non-onto branches of ", and there exist
y € X/ and an inverse branch h € H;_1 such that y = h(x). The jump-size of £71 at x can
be expressed as a sum of & € H,._(;_1) which in the summand is composed with h. Then, using
(3.3) and also (B.1) for iterate r — (j — 1) to estimate the sum in brackets below:

1 1 - . N
Size -L51(x) < 1 > |(h o b (z)| e7¢r-a-nehoh(@)+op;-10h()
7 7 heH,_(j_1),y€dom(h)

|7 ()| 6”%_”_1)%@)) |7 ()| eo0s-10h(@)

Vel N

>

h€H,_(j—1),yEdom(h)
SUD fo —3(j-1)
inf f, '

IN
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By taking the Cesaro limit we obtain statement 1. of the lemma for C7 = p3 %

Now for statement 2. let I C Y be an arbitrary interval, and let J denote a component of
I'\ X,. Note that if h € H, is such that J N dom(h) # 0, then dom(h) D J. The oscillation
Osc I(I\%EQI) is bounded by the sum of jump-sizes of discontinuities in I added to the sum of the
oscillations Osc J(%Lgl) on the components J of I\ X,.. For the latter, we have using formulas
(7.5), (7.3) and (B.1):

1 1 .
Oses (L) < = X [ ey de
o % heH, JNdom(h)
1 o o o /
S 5 [ (ol oo @l + e O g))) e
o heH, JNdom(h)
eaga,,,oh(g) 1%
< [y g a

h€H,.,JNdom(h)#£D e

< (eCh+Cy) /} j‘;?j:” d¢ = (C) +cl)“:11f° Jf" Leb(J).

Recall from Remark 3.2 that % < Cs. Summing over all components J of I \ X, gives

1 _
Oser (1 £51) < (eCy + C1)Cs Leb(I) +p°C5 Y Y p7™.

o J<r zEX’ﬂI

For the Cesaro limit, we get Oscr(f,) < Ceu(I) + C7Er(fy) for Cs = (eCh + C1)C5 and
Cr7 = p3Cs as required. This implies also the formula for Osc(1/f,), adjusting the constants Ci
and C7 if necessary. O

Before stating the next lemma, we recall that X = min{Leb(F(a)) : @ € «} and that
o = Ko=2) gince F is topologically mixing, there is k; € N such that F*1(I) > Y for all

5eC1 pg

intervals I of length Leb(I) > dy.

Lemma B.1. There is 1 € (0,1) such that for every z € Y and T > 0 the following property

holds: For every n > kq + log@K(fg’gﬁZ%‘;ClpoT)) and every interval J of length Leb(J) > T,

Leb( U a) > mLeb(J) for Jy,={aca”:aC Jandz € F"(a)}.
aeJ,

Proof. By the choice of k1, there is a finite collection € of k;-cylinders such that for each z € Y
and each I with Leb(I) > do, there is w € Q, w C I, such that z € F* (w). Let 7o :=

min{ =5 Leb(w) tw e N} >0.

For y €Y, define r;(y) = d(FI(y),0F’(a)), where a € o’ is the j-cylinder containing
y. Take J an arbitrary interval of length Leb(J) > 7, and define ZJ = {y € J : rj(y) < d}.
We derive Leb(Z2 ") from Leb(Z1) as follows. If a € o/, W = FJ(a) and a’ € « are such
that OW N a’ # 0, then the points {z € F(W Na') : d(z,0F(W Na')) < §} pull back to at
most two intervals in W N o’ of combined length < 24/ pp, and this contributes 2Leb(Z§ Jpo ) to
Leb(Zngl). For the cylinders a’ € « that are contained in W, we recall that Leb(F'(a’)) > K.
By the distortion bound from (2.2) we find Leb(Z ™' N F~7(a')) < 26cl‘sLeb( ). Combining
this (and summing over all such a), we get the recursive relation Leb(Z] +1) < 2Leb(Zj 5/p0 )+

Qe—Kl(sLeb(J ). This gives

Leb(2]) < Leb(Z0 , L 208 j:;( ) <((2Y Le:(J)+ KQ(epil”()?)a)Leb(J).
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. log(108¢ /Leb(J log(2K (po—2)/(e°1 por ;
Take § = 8 and j > E(LOS/LEN()) _ LoB(2K(po2)/ (% pu)) (o that (2)7 [ So5 < ). Then

Leb(y € J : r;j(y) > ) = Leb(J) — Leb(Zgo) > Leb(J) — %Leb(J) = %Leb(J). (B.2)

Let Bj ; be the collection of a € a7, a C J such that there is y € a with r;(y) > &. This means
by (B.2) that Leb(Uaep, ,a) > 3Leb(J) and 1 > Leb(F7(a)) > 26, for each a € B; ;. Take
z € Y and n = j + ky. It follows that there is an n-cylinder & C a such that F7(a) = w € {2 and
z € F*1(w). By boundedness of distortion

Leb(@) _ ¢, Leb(F/(@) _ _c,Leb(w)

Leb(a) = ©  Leb(Fi(a)) = 26, = °°
Hence Leb(Uges.a) > voe “'Leb(Ugep, ,a) > soerLeb(J), proving the lemma for 7, :=
Yo_ O

2eC1

Now we are ready for the proof of Lemma 5.2, which uses assumption (2.5).

Proof of Lemma 5.2. We will apply Lemma B.1 for J = p, an arbitrary element of Pj. Set Cy =
ne~1/2. Assumption (2.5) gives Leb(p) > 12p~F. Since n = 2k, we have j := n — k; > k.
Therefore (p%)j Le‘sb?p) < Qkp;;k‘so < . and hence (B.2) implies that Leb(y € p : r;(y) >
do) > 5Leb(p).

Recall that Bj, D {a € o/ : a C p,7;(y) > & for some y € a}, so F¥(a) > 2§, for each
a € Bjp. In particular, such a contains an @ € o such that z € F"(a), and Leb(Uucp; ,a) >
11 Leb(p) with n; as in Lemma B.1. Let By , be afinite subcollection of B; ;, such that Leb(Uge B;pd) >

2miLeb(p), and let hg : F"(@) — a denote the corresponding inverse branches.
Using the continuity of ¢ — ), and o +— e?%n°"a(2) for all a € B ,.j < 4k — ki and

p € P, we can choose € so small that & | (z)[e¥°ha(=) > 3|l (2)| forall a € B, and all

n
)\U

|o| < €. Therefore

1 o o z ]' opnohg(z 3
w2 WEIT = S @)l = 2 S ()

O heHnp,zcdom(h) 7 a€B}, a€B;
range(h)Cp ’ ’
> 3 3 e Leb(a) > mLeb(p)
4 Leb(F(a)) 2e1
a€B]
This finishes the proof. O

C A technical result for the proof of Proposition 8.2

In this subsection we will use the generalised BV seminorm varyv introduced by Keller [11]
because it compares more easily with || ||; than Vary does. To be precise, we define

vatyv = sup 1/ Osc(v, B(z)) dLeb,
Y

0<r<l K
where Osc(v, B, (z)) = sup,, e p, () [v(y) — v(y')| (also for complex-valued functions).

Lemma C.1. In dimension one, Vary and vavy are equivalent seminorms. More precisely, for
allv € BV(Y') we have

1
§Varyv < varyv < 3Varyv. (C.1)
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Proof. [6, Lemma 1] states that Vary v < 2vatyv. For the other inequality, choose « € (0, 1) and
partition Y into half-open intervals J of length |J| < k. For each such J, let J' and J” denote its
left and right neighbour. Then

1 1 1
- /Y Osc(v, B, ()) dLeb EZ /J Osc(v, By () dLeb < ;;Leb(J)OstUJ/UJuv

< Z OSCJUJ/UJ”U < 3Varyv.
J

Both inequalities together prove (C.1). O

Recall that K := min{|F(a)| : a € a}.
Lemma C.2. Let v € BV(Y) such that Varyv < Ky||v||1 for some Ky > 1. Choose 1 € (0,1)
such that Lemma B.1 holds and take K; = 6“1 /m. Let

ro i= max{kz,kl + (log W)/log %}

Then for every r > 1o and all I, € Q.

Ky
lv]]1 < 7/ |v| dLeb.
Leb(Ir) F-r(I,)

Proof of Lemma C.2. Fix r; := (18K,)~!. Since we assumed that K; > 6e“1 /n; we have
(1-— slelc(ll ) > 6Kok1. Let E be a partition of Y into half-open intervals J = [p, q) of length
L < Leb(J) < %t Next recall that K := min{|F(a)| : a € a} and take r > ro. Note that this

7o is the bound from Lemma B.1 with 7 = k1 /3 = 1/(54K)).
We prove the lemma by contradiction, so assume that there exists I, € @, such that ||v|[; >
) |v| dLeb. Define

2Leb(I,
M([T):{JGE : / |v|dLeb§$/\v|dLeb}.
Fr(I)NJ Ky J

I3 cnrry S [vldleb < gllvlli (0 3 s,y [y [0l dLeb > g[v]|1), then we have

v|dLeb > / v| dLeb
[ > o

JgM(I “r(Ir)nJ

2L 2L
eb S /|v|dLb eb /|v\dLeb

J¢M (I

K
Leb(ll,,) fF*"(

contradicting our choice of I,.. Therefore, it remains to deal with the case

/ | dLeb > f||v\|1 ©2)
JEM(I,)

Recall that €€ is a uniform distortion bound for the inverse branches of F". Let z be tlge middle
pointof I, and J, = {a € a” : a C J,z € F"(a)}. This means in particular that % >

3Leb(1,) for each a € J.. By Lemma B.1, Leb(Uaes a) > miLeb(J). This gives

/ oldLeb > inffolLeb(F~"(I,) 1) > inf [o] 3 Leb(F~" () Na)
F=r(I,)nJ 7 acl.

o, Leb(F"(a) N I,,)
mf v Z W’())Leb(a)

Y

a€J,

inf / [v] m inf ; |v]
9eC1 a; Leb(a)Leb(I;) > 7Leb(J)Leb(Ir).
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Hence for each J € M(I,.),

2¢¢1
Leb(J)Leb(Z,.) inf [v| < / |v| dLeb
J gl r(I)NJ

4e1 / 4e€
< Leb(/, v| dLeb < Leb J)Leb sup |v
o o] dLeb <~ Leb(J)Leb([,) sup
and therefore inf ; |v| < ;715;11 sup |v| and
4
Oscjv > Oscylv] > (1 — )sup |v]. (C.3)
mKi”
Recall that by the choice of 1, k7' (1 — Ef—lc(ll) > 6K(. Bounding the sup from below using

(C.3), we obtain

Cy

1 4
sup — / Osc(v, Be (x)) dLeb > Leb(J)ry (1 — —
J

sup |v| > 6 KyLeb(J) sup |v|.
0<k<l K 771K1) Jp| | 2 6KoLeb(J) Jp| |

By the second inequality in (C.1),

1
Varyv >  —vpartyv > > — Z / Osc(v, Bx(z)) dLeb
3 =

1
> = 6KoLeb(J)sup |v| > 2K v| dLeb.
> Y. 6K (J)sup [v] > 2K o I

JeM(I,) JeM(Ir)

Finally (C.2) gives Varyv > K [ |v|dLeb = Kg||v||1. This contradicts the assumption of the
lemma, completing the proof. O

D Proof of Theorem 2.6

The proof of Theorem 2.6 follows closely the argument used in [I, Proof of Theorem 2.1] with
obvious required modiﬁcations Asin [ ] the conclusion follows once we show that the Laplace
transform p(s) := p(s fo estpy (v, w) dt behaves as described in the result below.

Lemma D.1. There exists ¢ > 0 such that p(s) is analytic on {fs < €} for allv € Fpyo(Y?)
and w € L>(Y'?). Moreover; there exists C' > 0 such that |p(s)| < C(1+|b|'/?)||v
forall s = o +ibwitho € [0, 3¢].

The proof of Theorem 2.6 given Lemma D.1 is standard, relying on the formula p; (v, w) =
Jre *'p(s) ds, where T' = {Rs = ¢/2}; it goes, for instance, exactly the same as [I, Proof of
Theorem 2 1] given [I, Lemma 2.17], so we omit this.

The proof of Lemma D.1 uses three ranges of n and b: i) n < Alog |b], [b| > 2 with A as in
Theorem 2.3, ii) |b| > max{4x/D,2} and iii) 0 < |b| < max{4w/D,2}. The first two regions
go almost word by word as in [|, Lemma 2.17]. For the third region, the part of the proof in
[1] where the standard form of Lasota-Yorke inequality of L, is used doesn’t apply (in our case
||£g+sz1 with o > 0 is not bounded). Instead, we use quasi-compactness of L;, (i.e., o = 0)
given by Remark A.2 and the continuity estimate of Proposition 3.1. These together ensure that
the essential spectral radius of Ly is strictly less than 1, and that the spectrum in a neighbourhood
of 1 contains only isolated eigenvalues. The rest of the argument goes exactly as [!, Proof of
Lemma 2.22], distinguishing between b # 0 the and b = 0. In particular, proceeding as in [1,
Proof of Lemma 2.22], we obtain the aperiodicity property and analyticity of the operator Q;; in
the notation of [ 1, Proof of Lemma 2.22] in a neighborhood of b for each b # 0. Also, in a neigh-
borhood of b = 0 we speak of the isolated eigenvalue \;;, (for the operator L) and corresponding
spectral projection P;,. Using again the continuity property of L, given by Proposition 3.1, we
can continue A, and P; in a neighborhood of s = 0.

31



32

Henk Bruin and Dalia Terhesiu

Acknowledgements: We would like to thank Ian Melbourne for valuable discussions and Tomas
Persson for informing us about reference [2]. We are also grateful for the support the Erwin
Schrodinger Institute in Vienna, where this paper was completed.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]
(1]

[12]
(13]

[14]

V. Aratijo, 1. Melbourne, Exponential decay of correlations for non-uniformly hyperbolic
flows with a C* T stable foliation. Ann. Henri Poincaré 17 (2016) 2975-3004.

M. Aspenberg, T. Persson, Shrinking targets in parametrised families. Preprint 2016
arXiv:1603.01116

A. Avila, S. Gouézel, J.-C. Yoccoz, Exponential mixing for the Teichmiiller flow, Publ.
Math. Inst. Hautes Etudes Sci. 104 (2006), 143-211.

V. Baladi, B. Vallée, Exponential decay of correlations for surface semi-flows without finite
Markov partitions, Proc. Amer. Math. Soc. 133 (2005), 865-874.

O. Butterley, P. Eslami, Exponential mixing for skew products with discontinuities, Trans.
Amer. Math. Soc. 369 (2017), 783-803.

J. Buzzi, G. Keller, Zeta functions and transfer operators for multidimensional piecewise
affine and expanding maps, Ergod. Th. & Dynam. Sys. 21 (2001), 690-716.

D. Dolgopyat, On the decay of correlations in Anosov flows, Ann. of Math. 147 (1998)
357-390.

P. Eslami, Stretched-exponential mixing for C'1+ skew products with discontinuities, Er-
god. Th. & Dynam. Sys. 17 (2017) 146-175.

E. Giusti Minimal surfaces and functions of bounded variation, Monographs in Mathemat-
ics, Birkhduser, 80 (1984).

C. Liverani, On contact Anosov flows, Ann. of Math. 159 (2004) 1275-1312.

G. Keller, Generalized bounded variation and applications to piecewise monotonic transfor-
mations, Z. Wahrscheinlichkeitstheorie verw. Geb. 69 (1985), 461-478.

M. Rychlik, Bounded variation and invariant measures, Studia Math. 69 (1983), 69-80.

R. Zweimiiller, Ergodic structure and invariant densities of non-Markovian interval maps
with indifferent fixed points, Nonlineariy 11 (1998), 1263-1267.

R. Zweimiiller, Ergodic properties of infinite measure-preserving interval maps with indif-
ferent fixed points, Ergod. Th. & Dynam. Sys. 20 (2000), 1519-1549.



	Introduction
	Specific Examples

	Set-up, notation, assumptions and results.
	The AFU map F.
	Uniform expansion.
	Adler's condition.
	Finite image partition.
	Roof function.
	Further assumption on F (relevant for the non-Markov case)
	UNI condition restricted to atoms of the image partition ¶k
	Main result
	Application to suspension semi-flows

	Twisted and normalized twisted transfer operators
	New ingredients of the proof
	Towards the cone condition: discontinuities and jump-sizes
	Cancellation lemma
	Invariance of the cone
	Proof of Theorem ??
	L2 contraction for functions in Cb
	Dealing with arbitrary BV observables via the "026B30D "026B30D b norm
	Completing the argument

	Proof of Proposition ??
	Proofs of Lemmas ?? and ??
	A technical result for the proof of Proposition ??
	Proof of Theorem ?? 

