LIST OF CITATIONS of publications by Goulnara N. ARZHANTSEVA
more then 901 citations in total, excluding self-citations.

Last update: Nov. 22nd, 2022

Papers already published or accepted:
Summary and comments to my list of publications

[57] G.N. Arzhantseva, M. Steenbock, Rips construction without unique product, Pacific Journal of Mathematics, 322(1) (2023), 1-9.   pdf
12 citations by


M. Arenas, A cubical Rips construction, (2022), arXiv:2202.01048.
E. Einstein, T. Ng, Relative cubulation of small cancellation free products, (2021), arXiv:2111.03008. 
M. Finn-Sell, Almost quasi-isometries and more non-C*-exact groups, Mathematical Proceedings of the Cambridge Philosophical Society 162 (2017), no. 3, pp. 393-403.
G. Gardam, A counterexample to the unit conjecture for group rings, Annals of Mathematics (2) 194 (2021), no. 3, 967-979.
D. Gruber, Infinitely presented C(6)-groups are SQ-universal, J. Lond. Math. Soc. (2) 92 (2015), no. 1, 178-201.
D. Gruber, A. Martin, M. Steenbock, Finite index subgroups without unique product in graphical small cancellation groups, Bull. Lond. Math. Soc. 47 (2015), no. 4, 631–638.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Annales de l'Institut Fourier, 68 (2018) no. 6, 2501-2552.
K. Khan, Fundamental groups of certain von Neumann algebras, PhD thesis, (2020), Vanderbilt University.
K. Khan, Subgroups of lacunary hyperbolic groups and free products, (2020), arXiv:2002.08540.
S. Kionke, J. Raimbault, N. Dunfield, On geometric aspects of diffuse groups, Doc. Math. 21 (2016), 873-915.
A. Martin, M. Steenbock, A combination theorem for cubulation in small cancellation theory over free products, Ann. Inst. Fourier, 67 (2017), no. 4, 1613-1670.
J. Öinert, Units, zero-divisors and idempotents in rings graded by torsion-free groups, (2019), arXiv:1904.04847.

[56] G.N. Arzhantseva, A. Biswas, Logarithmic girth expander graphs of SL_n(F_p), Journal of Algebraic Combinatorics, 56 (2022), 691-723.   pdf
10 citations by


I. Benjamini, M. Fraczyk, G. Kun, Expander spanning subgraphs with large girth, (2020), arXiv:2012.15502.
A. Biswas, Flexibility and movability in Cayley graphs, (2019), arXiv:1911.06261.
A. Biswas, J. P. Saha, Expansion in Cayley graphs, Cayley sum graphs and their twists, (2021), arXiv:2103.05935.
T. Budzinski, N. Curien, B. Petri, On the minimal diameter of closed hyperbolic surfaces, Duke Math. J. 170(2) (2021), 365-377.
A. S. Detinko, W. A. de Graaf, 2-Generation of simple Lie algebras and free dense subgroups of algebraic groups, Journal of Algebra 545 (2020), 159-173.
D. Gruber, A. Sisto, Divergence and quasi-isometry classes of random Gromov's monsters, (2018), arXiv:1805.04039.
C. Le Coz, C. Battarbee, R. Flores, Th. Koberda, D. Kahrobaei, Post-quantum hash functions using SL_n(F_p), (2022), arXiv:2207.03987.
M. W. Liebeck, A. Shalev, Girth, words and diameter, Bull. London Math. Soc. 51 (2019), no. 3, 539-546.
M. Polak, E. Zhupa, Keyed hash function from large girth expander graphs, Albanian Journal of Mathematics, 16(1) (2022), 25-39.
M. Zeggel, The bounded isomorphism conjecture for box spaces of residually finite groups, (2021), arXiv:2103.16967.

[55] G.N. Arzhantseva, M. Hagen, Acylindrical hyperbolicity of cubical small-cancellation groups,
Algebraic & Geometric Topology 22(5) (2022), 2007-2078.   pdf
5 citations by

M. Arenas, Cubical small-cancellation theory and large-dimensional hyperbolic groups, Thesis, University of Cambridge, (2023).
M. Arenas, K. Jankiewicz, D. Wise, Hyperbolicty in non-metric cubical small cancellation, arXiv:2309.16860.
A. Genevois, Coning-off CAT(0) cube complexes, Ann. Inst. Fourier (Grenoble), 71 (2021), no. 4, 1535–1599.
A. Genevois, A. Stocker, Partially CAT(−1) groups are acylindrically hyperbolic, Bull. Soc. Math. France 147 (2019), no. 3, 377–394.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Ann. Inst. Fourier (Grenoble), 68 (2018), no. 6, 2501–2552.

[54] G.N. Arzhantseva, S. Gal, On approximation properties of semidirect products of groups,
Annales mathematiques Blaise Pascal, 27(1) (2020), 125-130.   pdf
5 citations by


F. Berlai, Residual properties of free products, Comm. Algebra 44 (2016), no. 7, 2959-2980.
A. Bhattacharya, M. Brannan, A. Chirvasitu, S. Wang, Property (T), property (F) and residual finiteness for discrete quantum groups, J. Noncommut. Geom. 14 (2020), no. 2, 567-589.
L. Bowen, P. Burton, Locally compact sofic groups, (2021), arXiv:2106:09118.
M. Doucha, J. Gismatullin, On Dual surjunctivity and applications, (2020), arXiv:2008:10565.
D. F. Holt, S. Rees, Some closure results for C-approximable groups, Pacific J. Math. 287 (2017), no. 2, 393-409.

[53] G.N. Arzhantseva, F. Berlai, M. Finn-Sell, L. Glebsky, Unrestricted wreath products and sofic groups,
International Journal of Algebra and Computation, 29(02) (2019), 343-355.   pdf
4 citations by


L. Bowen, P. Burton, Locally compact sofic groups, (2021), arXiv:2106:09118.
J. Brude, R. Sasyk, Permanence properties of verbal products and verbal wreath products of groups, (2019), arXiv:1909.07800.
J. Brude, R. Sasyk, Metric approximations of unrestricted wreath products when the acting group is amenable, (2020), arXiv:2004.05735.
R. Ji, C. Ogle, B. Ramsey, Relative amenability and relative soficity, (2018), arXiv:1807.07600

[52] G.N. Arzhantseva, Ch. Cashen, Cogrowth for group actions with strongly contracting elements,
Ergodic Theory and Dynamical Systems, 40(7) (2020), 1738-1754.   pdf
2 citations by


I. Gekhtman, A. Levit, Critical exponents of invariant random subgroups in negative curvature, Geom. Funct. Anal. 29 (2019), no. 2, 411-439.
K. Matsuzaki, Y. Yabuki, J. Jaerisch, Normalizer, divergence type, and Patterson measure for discrete groups of the Gromov hyperbolic space, Groups Geom. Dyn. 14 (2020), no. 2, 369-411.

[51] G.N. Arzhantseva, L. Paunescu, Constraint metric approximations and equations in groups,
Journal of Algebra, 516 (2018), 329-351.   pdf
4 citations by

H. Bradford, Local permutation stability, (2022), arXiv:2211.15249.
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups, (2021), arXiv:2105.00516.
A. Ioana, Almost commuting matrices and stability for product groups, (2021), arXiv:2108.09589.
A. Ioana, Stability for product groups and property (τ), J. Algebra 516 (2018), J. Funct. Anal. 279 (2020), no. 9, 108729, 32 pp.

[50] G.N. Arzhantseva, C. Drutu, Geometry of infinitely presented small cancellation groups and quasi-homomorphisms,
Canadian Journal of Mathematics, 71(5) (2019), 997-1018.   pdf
5 citations by


M. Bradenbursky, Ś. Gal, J. Kędra, M. Marcinkowski, The cancellation norm and the geometry of bi-invariant word metrics, Glasg. Math. J. 58 (2016), no. 1, 153–176.
I. Chatterji, Introduction to the rapid decay property, Around Langlands correspondences, 53-72, Contemp. Math., 691, Amer. Math. Soc., Providence, RI, 2017.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2501-2552.
A. Martin, Complexes of groups and geometric small cancelation over graphs of groups, Bull. Soc. Math. France 145 (2017), no. 2, 193-223.
M. Sapir, The rapid decay property and centroids in groups, J. Topol. Anal. 7 (2015), no. 3, 513–541.

[49] G.N. Arzhantseva, Ch. Cashen, D. Gruber, D. Hume, Negative curvature in graphical small cancellation groups,
Groups, Geometry and Dynamics, 13(2) (2019), 579-632.   pdf
12 citations by


T. Aougab, M. G. Durham, S. J. Taylor, Pulling back stability with applications to Out(Fn) and relatively hyperbolic groups, J. Lond. Math. Soc. (2) 96 (2017), no. 3, 565-583.
Ch. Cashen, Morse subsets of CAT(0) spaces are strongly contracting, Geom. Dedicata 204 (2020), 311–314.
Ch. Cashen, J. Mackay, A metrizable topology on the contracting boundary of a group Trans. Amer. Math. Soc. 372 (2019), no. 3, 1555–1600.
M. Cordes, D. Hume, Stability and the Morse boundary J. Lond. Math. Soc. (2) 95 (2017), no. 3, 963–988.
R. Coulon, D. Gruber, Small cancellation theory over Burnside groups, Adv. Math. 353 (2019), 722–775.
I. Gekhtman, W. Yang, Counting conjugacy classes in groups with contracting elements , (2018), arXiv:1810.02969.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2501–2552.
S. Han, Relative Hyperbolicity of graphical small cancellation groups , (2020), arXiv:2010.13528.
D. Hume, A. Sisto, Groups with no coarse embeddings into hyperbolic groups New York J. Math. 23 (2017), 1657–1670.
M. Incenerti-Medici, Comparing topologies on the Morse boundary and quasi-isometry invariance, Geom. Dedicata 212 (2021), 153-176.
W. Yang, Statistically convex-cocompact actions of groups with contracting elements, Int. Math. Res. Not. IMRN 2019, no. 23, 7259-7323.
W. Yang, Genericity of contracting elements in groups, Math. Ann. 376 (2020), no. 3-4, 823-861.

[48] G.N. Arzhantseva, R. Tessera, Admitting a coarse embedding is not preserved under group extensions,
International Mathematics Research Notices, 2019 (20) (2019), 6480-6498.   pdf
9 citations by


B. Braga, , Y. C. Chung, and K. Li, Coarse Baum-Connes conjecture and rigidity for Roe algebras, Journal of Functional Analysis 279 (2020), no. 9, 108728.
C. Bönicke, C. Dell’Aiera, Going-down functors and the Künneth formula for crossed products by étale groupoids, Transactions of the American Mathematical Society, 372 (2019), no. 11, 8159-8194.
K. Boucher, On non-amenable embeddable spaces in relation with free products, (2018), arXiv:1801.04889.
T. Delabie, A. Khukhro, Box spaces of the free group that neither contain expanders nor embed into a Hilbert space. Advances in Mathematics 336 (2018), 70-96.
J. Deng, The Novikov conjecture and extensions of coarsely embeddable groups, (2019), arXiv:1910.05381.
J. Deng, Q. Wang, G. Yu, The coarse Baum-Connes conjecture for certain extensions and relative expanders, (2021), arXiv:2102.10617.
L. Guo, Z. Luo, Q. Wang, Y. Zhang,K-theory of the maximal and reduced Roe algebras of metric spaces with A-by-CE coarse fibrations, (2021), arXiv:2110.15624.
G. Li, X. Wang, Remarks on strong embeddability for discrete metric spaces and groups, arXiv:1709.02522.
K. Li, J. Špakula, J. Zhang, Measured asymptotic expanders and rigidity for Roe algebras, (2020), arXiv:2010.10749.

[47] G.N. Arzhantseva, G.A. Niblo, N. Wright, J. Zhang, A characterization for asymptotic dimension growth,
Algebraic & Geometric Topology, 18 (2018), 493-524.   pdf
4 citations by


T. Davila, Decomposition complexity growth of finitely generated groups, (2019), arXiv:1902.08561.
T. Davila, Infinite-dimensional coarse geometry of groups and spaces, PhD thesis, 2020, University of Florida.
E. Fioravanti, Superrigidity of actions on finite rank median spaces, Adv. Math. 352 (2019), 1206–1252.
J. Wang, Z. Xie, G. Yu, Decay of scalar curvature on uniformly contractible manifolds with finite asymptotic dimension, (2021), arXiv:2101.11584.

[46] G.N. Arzhantseva, Ch. Cashen, D. Gruber, D. Hume, Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction,
Documenta Mathematica, 22 (2017), 1193-1224.   pdf
29 citations by


C. Abbott, J. Behrstock, M. G. Durham, Largest acylindrical actions and Stability in hierarchically hyperbolic groups, Trans. Amer. Math. Soc. Ser. B 8 (2021), 66-104.
T. Aougab, M. G. Durham, S. J. Taylor, Pulling back stability with applications to Out(Fn) and relatively hyperbolic groups J. Lond. Math. Soc. (2) 96 (2017), no. 3, 565-583.
A. Bartels, M. Bestvina, The Farrell-Jones conjecture for mapping class groups, Invent. Math. 215 (2019), no. 2, 651-712.
J. Beyrer, E. Fioravanti, Cross ratios and cubulations of hyperbolic groups, (2018), arXiv:1810.08087.
N. Brady, H. C. Tran, Divergence of finitely presented groups, (2020), arXiv:2002.03653.
N. Brady, H. C. Tran, Divergence of finitely presented subgroups of CAT(0) groups, (2020), arXiv:2012.15803.
Ch. Cashen, Quasi-isometries need not induce homeomorphisms of contracting boundaries with the Gromov product topology Anal. Geom. Metr. Spaces 4 (2016), no. 1, 278–281.
Ch. Cashen, Morse subsets of CAT(0) spaces are strongly contracting Geom. Dedicata 204 (2020), 311–314.
Ch. Cashen, J. Mackay, A metrizable topology on the contracting boundary of a group Trans. Amer. Math. Soc. 372 (2019), no. 3, 1555–1600.
M. Cordes, A survey on Morse boundaries & stability, (2017), arXiv:1704.07598.
M. Cordes, D. Hume, Stability and the Morse boundary J. Lond. Math. Soc. (2) 95 (2017), no. 3, 963–988.
C. Druţu, S. Mozes, M. Sapir, Corrigendum to "Divergence in lattices in semisimple Lie groups and graphs of groups'', Trans. Amer. Math. Soc. 370 (2018), no. 1, 749-754.
E. Fink, Morse geodesics in torsion groups, (2017), arXiv:1710.11191.
E. Fioravanti, Cross ratios on cube complexes and length-spectrum rigidity, PhD thesis, 2019, University of Oxford.
M. Incenerti-Medici, Comparing topologies on the Morse boundary and quasi-isometry invariance, Geom. Dedicata 212 (2021), 153-176.
M. Hagen, Large facing tuples and a strengthened sector lemma, (2020), arXiv:2005.09536.
L. Huang, B. Kleiner, S. Stadler, Morse quasiflats I, (2019), arXiv:1911.04656.
H. Kim, Stable subgroups and Morse subgroups in mapping class groups, Internat. J. Algebra Comput. 29 (2019), no. 5, 893-903.
S. C. Mousley, J. Russell, Hierarchically hyperbolic groups are determined by their Morse boundaries, (2018), arXiv:1801.04867.
D. Murray, Y. Qing, A. Zalloum, Sublinearly Morse geodesics in CAT(0) spaces: Lower divergence and hyperplane characterization, (2020), arXiv:2008.09199.
A. Pal, R. Pandey, Acylindrical hyperbolicity of subgroups, New York J. Math. 26 (2020), 1213-1231.
A. Pal, R. Pandey, Contracting boundary of a cusped space, (2020), arXiv:2012.08259.
A. Pal, S. Paul, Strongly contracting geodesics in a tree of spaces, (2019), arXiv:1904.09906.
Y. Qing, K. Rafi, G. Tiozzo, Sublinearly Morse boundary I: CAT(0) spaces, (2020), arXiv:1909.02096.
Y. Qing, K. Rafi, G. Tiozzo, Sublinearly Morse boundary II: Proper geodesic spaces, (2020), arXiv:2011.03481.
Y. Qing, A. Zalloum, Rank one isometries in sublinearly morse boundaries of CAT(0) groups, (2019), arXiv:1911.03296.
J. Russell, D. Spriano, H.C. Tran, Convexity in hierarchically hyperbolic spaces, (2018), arXiv:1809.09303.
J. Russell, D. Spriano, H.C. Tran, The local-to-global property for Morse quasi-geodesics, (2019), arXiv:1908.11292.
H. C. Tran, On strongly quasiconvex subgroups, Geom. Topol. 23 (2019), no. 3, 1173-1235.

[45] G.N. Arzhantseva, L. Paunescu, Linear sofic groups and algebras,
Transactions of the American Mathematical Society, 369 (2017), 2285-2310.   pdf
28 citations by


A. Anderson, M. Lupini, The Fraïssé limit of matrix algebras with the rank metric, (2017), arXiv:1712.04431.
J. Brude, R. Sasyk, Permanence properties of verbal products and verbal wreath products of groups, (2019), arXiv:1909.07800.
J. Brude, R. Sasyk, Metric approximations of unrestricted wreath products when the acting group is amenable, (2020), arXiv:2004.05735.
V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups and Connes' embedding conjecture, Lecture Notes in Mathematics 2136, Springer 2015.
T. Ceccherini-Silberstein, M. Coornaert, On sofic monoids , Semigroup Forum 89 (2014), no. 3, 546–570.
M. de Chiffre, Approximate representations of groups, PhD thesis, 2018, Technischen Universität Dresden.
M. Doucha, Metric topological groups: their metric approximation and metric ultraproducts, Groups Geom. Dyn. 12 (2018), no. 2, 615-636.
G. Elek, Convergence and limits of linear representations of finite groups, J. Algebra 450 (2016), 588-615.
G. Elek, Infinite dimensional representations of finite dimensional algebras and amenability, (2015), arXiv:1512.03959.
G. Elek, L. Grabowski, Almost commuting matrices with respect to the rank metric , (2017), arXiv:1708.05338
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups, (2021), arXiv:2105.00516.
L. Glebsky, Approximations of groups, characterizations of sofic groups, and equations over groups, J. Algebra 477 (2017), 147-162.
M. Gromov, Number of questions, 2014, http://www.ihes.fr/~gromov/PDF/Problems-marc6-11-2014.pdf
M. Gromov, Morse spectra, homology measures, spaces of cycles and parametric packing problems, Ann. of Math. Stud. 205 (2020), 141-205.
B. Hayes, A. W. Sale, Metric approximations of wreath products, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 423-455.
D. F. Holt, S. Rees, Some closure results for C-approximable groups, (2016), arXiv:1601.01836
A. Ivanov, Sofic metric groups and continuous logic, (2016), arXiv:1604.08446
A. Ivanov, Metric ultraproducts of finite groups with respect to some length functions, (2014), arXiv:1401.0857
A. Ivanov, Soficity and hyperlinearity for metric groups, Topology Appl. 235 (2018), 146-156.
A. Korchagin, MF-property for countable discrete groups, (2017), arXiv:1704.06906.
M. Lupini, An invitation to model theory and C*-algebras, Bull. Symb. Log. 25 (2019), no. 1, 34-100.
N. Nikolov, J. Schneider, A. Thom, Some remarks on finitarily approximable groups, J. Éc. polytech. Math. 5 (2018), 239-258.
L. M. Rivera, N. M. Veyna García, Aproximación métrica de grupos: una breve perspectiva, (2017), arXiv:1709.01202
J. Schneider, On ultraproducts of compact quasisimple groups, PhD thesis, 2021, Universität Leipzig.
A. Stolz, Linear approximation of groups and ultraproducts of compact simple groups, PhD thesis, 2013, Universität Leipzig.
A. Stolz, Properties of linearily sofic groups, (2013), arXiv:1309.7830.
A. Thom, Finitary approximations of groups and their applications, Proceedings of the ICM (2018).
S. Virili, A point-free approach to L-Surjunctivity and stable finiteness, (2014), arXiv:1410.164.
S. Virili, Group representations, algebraic dynamics and torsion theories, PhD thesis, 2014, Universitat Autònoma de Barcelona.

[44] G.N. Arzhantseva, Ch. Cashen, J. Tao, Growth tight actions,
Pacific Journal of Mathematics, 278(1) (2015), 1-49.   pdf
23 citations by


A. Broise-Alamichel, J. Parkkonen, F. Paulin, Equidistribution and counting under equilibrium states in negative curvature and trees, Applications to non-Archimedean Diophantine approximation. Progress in Mathematics, 329, Birkhäuser/Springer, 2019.
C. Cashen, J. Tao, Growth tight actions of product groups, Groups Geom. Dyn. 10 (2016), no. 2, 753-770.
M. Cordes, J.Russell, D. Spriano, A. Zalloum, Regularity of Morse geodesics and growth of stable subgroups, (2020), arXiv:2008.06379.
R. Coulon, R. Dougall, B. Schapria, S. Tapie, Twisted Patterson-Sullivan measures and applications to amenability and coverings, (2018), arXiv:1809.10881.
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505-530.
S. Das, M. Mj, Controlled Floyd separation and non relatively hyperbolic groups, J. Ramanujan Math. Soc. 30 (2015), no. 3, 267-294.
I. Gekhtman, S. J. Taylor, G. Tiozzo, Counting problems in graph products and relatively hyperbolic groups, Israel J. Math. 237 (2020), no. 1, 311-371.
I. Gekhtman, W. Yang, Counting conjugacy classes in groups with contracting elements , (2018), arXiv:1810.02969.
S. Gouëzel, C. Noûs, B. Schapira, S. Tapie, Pressure at infinity and strong positive recurrence in negativecurvature, (2020), arXiv:2007.08816v2.
J. Han, Growth of pseudo-anosov conjugacy classes in Teichmüller space, (2021), arXiv:2105.08640.
J. Han, Growth rate of dehn twist lattice points in Teichmüller space, (2021), arXiv:2105.08624.
S. Han, W. Yang, Generic free subgroups and statistical hyperbolicity, (2018), arXiv:1812.06265.
Z. He, J. Liu, W. Yang, Large quotients of group actions with a contracting element, (2020), arXiv:2007.15825.
I. Kapovic, J. Maher, C. Pfaff, S.J. Taylor, Random outer automorphisms of free groups: Attracting trees and their singularity structures, (2018), arXiv:1805.12382.
K. Matsuzaki, Growth and cogrowth tightnessof Kleinian and hyperbolic groups, RIMS Kôkyûroku Bessatsu B66 (2017), 21-36.
M. Mj, P. Roy, Stable random fields, Bowen-Margulis measures and extremal cocycle growth, (2018), arXiv:1809.08295v1.
Y. Qing, K. Rafi, G. Tiozzo, Sublinearly Morse boundary II: Proper geodesic spaces, (2020), arXiv:2011.03481.
K. Rafi, Y. Verberne, Geodesics in the mapping class group, (2018), arXiv:1810.12489.
J. Russell, D. Spriano, H.C. Tran, The local-to-global property for Morse quasi-geodesics, (2019), arXiv:1908.11292.
Y. Verberne, Pseudo-Anosov homeomorphisms constructed using poitive Dehn twists, PhD thesis, 2020, University of Toronto.
B. Wiest, Garside groups and geometry, (2020), arXiv:2008.08802.
W. Yang, Statistically convex-cocompact actions of groups with contracting elements, Int. Math. Res. Not. IMRN 2019, no. 23, 7259-7323.
W. Yang, Genericity of contracting elements in groups, Math. Ann. 376 (2020), no. 3-4, 823-861.

[43] G.N. Arzhantseva, L. Paunescu, Almost commuting permutations are near commuting permutations,
Journal of Functional Analysis, 269(3) (2015), 745-757.   pdf
43 citations by


S. Atkinson, Some results on tracial stability and graph products, Indiana Univ. Math. J. 70 (2021), no. 3, 1167–1187.
S. Atkinson, S. Kunnawalkam Elayavalli, On ultraproduct embeddings and amenability for tracial von Neumann algebras, Int. Math. Res. Not. IMRN 2021, no. 4, 2882–2918.
O. Becker, M. Chapman, Stability of approximate group actions: uniform and probabilistic, J. Eur. Math. Soc. (2022), in press.
O. Becker, A. Lubotzky, Group stability and Property (T), J. Funct. Anal. 278 (2020), no. 1, 108298, 20 pp.
O. Becker, A. Lubotzky, J. Mosheiff, Stability and testability: equations in permutations, (2020), arXiv:2011.05234.
O. Becker, A. Lubotzky, J. Mosheiff, Testability of relations between permutations, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), 2022, pp. 286-297.
O. Becker, A. Lubotzky, J. Mosheiff, Testability in group theory, (2022), arXiv:2204.04539.
O. Becker, A. Lubotzky, A. Thom, Stability and invariant random subgroups, Duke Math. J. 168 (2019), no. 12, 2207-2234.
O. Becker, J. Mosheiff, Abelian groups are polynomially stable, Int. Math. Res. Not. IMRN 2021, no. 20, 15574–15632.
L. Bowen, P. Burton, Flexible stability and nonsoficity, Trans. Amer. Math. Soc. 373 (2020), no. 6, 4469–4481.
H. Bradford, Local permutations stability, (2022), arXiv:2211.15249.
P. Burton, Hyperlinear approximations to amenable groups come from sofic approximations, (2021), arXiv:2110.03076.
V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups and Connes' embedding conjecture, Lecture Notes in Mathematics 2136, Springer 2015.
M. Cavaleri, Algorithms and quantifications in amenable and sofic groups, PhD thesis, Universita degli studi di Roma La Sapienza (2016).
M. Cavaleri, R. Munteanu, L. Paunescu, Two special subgroups of the universal sofic group, Ergodic Theory Dynam. Systems 39 (2019), no. 12, 3250-3261.
M. De Chiffre, Approximate representations of groups, PhD thesis, Technische Universität Dresden (2019).
M. De Chiffre, L. Glebsky, A. Lubotzky, A. Thom, Stability, cohomology vanishing, and non-approximable groups, Forum Math. Sigma 8 (2020), Paper No. e18, 37 pp.
S. Eilers, T. Shulman, A. Sørensen, C*-stability of discrete groups, Adv. Math. 373 (2020), 107324, 41 pp.
G. Elek, Ł. Grabowski, Almost commuting matrices with respect to the rank metric, Groups Geom. Dyn. 15 (2021), no. 3, 1059–1083.
D. Enders, T. Shulman, Almost commuting matrices, cohomology, and dimension, (2019), arXiv:1902.10451.
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups, (2021), arXiv:2105.00516.
M. A. García Morales, L. Glebsky, Property of defect diminishing and stability, (2019), arXiv:1911.11752v2.
D. Hadwin, T. Shulman, Stability of group relations under small Hilbert-Schmidt perturbations, J. Funct. Anal. 275 (2018), no. 4, 761–792.
D. Hadwin, T. Shulman, Variations of projectivity for C*-algebras, Pacific J. Math. 301 (2019), no. 2, 421-440.
H. Helfgott, K. Juschenko, Soficity, short cycles, and the Higman group, Trans. Amer. Math. Soc. 371 (2019), no. 4, 2771–2795.
A. Ioana, Stability for product groups and property (τ), J. Funct. Anal. 279 (2020), no. 9, 108729, 32 pp.
A. Ioana, On sofic approximations of F2×F2, Ergodic Theory Dynam. Systems (2021), 1-19.
A. Ioana, Almost commuting matrices and stability for product groups, (2021), ar Xiv:2108.09589
M. Kassabov, V. Kuperberg, T. Riley, Soficity and variations on Higman’s group, J. Comb. Algebra 3 (1) (2019), 41–70.
J. König, A. Leitner, D. Neftin, Almost-regular dessins d'enfant on a torus and sphere, Topology Appl. 243 (2018), 78–99.
N. Lazarovich, A. Levit, Y. Minsky, Surface groups are flexibly stable, (2019), arXiv:1901.07182.
A. Levit, A. Lubotzky, Infinitely presented permutation stable groups and invariant random subgroups of metabelian groups, Ergodic Theory Dynam. Systems, 42(6) (2022), 2028-2063.
A. Levit, A. Lubotzky, Uncountably many permutation stable groups, (2019), arXiv:1910.11722v1.
A. Levit, I. Vigdorovich, Characters of solvable groups, Hilbert-Schmidt stability and dense periodic measures, (2022), arXiv:2206.02268.
A. Lubotzky, I. Oppenheim, Non p-norm approximated groups, J. Anal. Math. 141 (2020), no. 1, 305-321.
M. Lupini, An invitation to model theory and C*-algebras, Bull. Symb. Log. 25 (2019), no. 1, 34–100.
K. Mallahi-Karai, M. Mohammadi Yekta, Optimal linear sofic approximations of countable groups, (2021), arXiv:2112.10111.
M. A. G. Morales, L. Glebsky, Property of defect diminishing and stability, International Electronic Journal of Algebra 31 (2022), 49-54.
R. Moreno, L.M. Rivera, Blocks in cycles and k-commuting permutations, SpringerPlus (2016) 5: 1949.
L. Oppenheim, Garland's method with Banach coefficients, (2020), arXiv:2009.01234.
L. Paunescu, F. Radulescu, A generalisation to Birkhoff-von Neumann theorem, Adv. Math. 308 (2017), 836-858.
L. Paunescu, A. Sipos, A proof-theoretic metatheorem for trcial von Neumann algebras, (2022), arXiv:2209.01797.
L. M. Rivera, Integer sequences and k-commuting permutations, Integers 15 (2015), Paper No. A46, 22 pp.

[42] G.N. Arzhantseva, D. Osajda, Infinitely presented small cancellation groups have Haagerup property,
Journal of Topology and Analysis, 7(3) (2015), 389-406.   pdf
12 citations by


V. Alekseev, M. Finn-Sell, Sofic boundaries of groups and coarse geometry of sofic approximations, Groups Geom. Dyn. 13 (2019), no. 1, 191-234.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky conjecture, Operator algebras and their applications, 1-33, Contemp. Math., 671, Amer. Math. Soc., Providence, RI, 2016.
Y. Cornulier, Group actions with commensurated subsets, wallings and cubings, (2013), arXiv:1302.5982v2.
M. Finn-Sell, Almost quasi-isometries and more non-exact groups, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393-403.
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups, (2021), arXiv:2105.00516.
D. Gruber, Infinitely presented C(6)-groups are SQ-universal, J. Lond. Math. Soc. (2) 92 (2015), no. 1, 178-201.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2501-2552.
S. Knudby, On connected Lie groups and the approximation property, C. R. Math. Acad. Sci. Paris 354 (2016), no. 7, 697-699.
A. Martin, Complexes of groups and geometric small cancellation over graphs of groups, Bull. Soc. Math. France 145 (2017), no. 2, 193-223.
M. Mimura, Amenability versus non-exactness of dense subgroups of a compact group. J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part II: Fibred coarse embeddings, Anal. Geom. Metr. Spaces 7 (2019), no. 1, 62-108.
D. Osajda, Small cancellation labellings of some infinite graphs and applications, Acta Math. 225 (2020), no. 1, 159-191.

[41] G.N. Arzhantseva, R. Tessera, Relative expanders,
Geometric and Functional Analysis [GAFA], 25(2) (2015), 317-341.   pdf
18 citations by


P. Awasthi, M. Charikar, R. Krishnaswamy, and A. K. Sinop, Spectral Embedding of k-Cliques, Graph Partitioning and k-Means, In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (ITCS '16). Association for Computing Machinery, New York, NY, USA, 301–310.
C. Cave, On coarse geometric properties of discrete andlocally compact groups, PhD thesis, 2015, University of Southampton.
K. Das, From the geometry of box spaces to the geometry and measured couplings of groups, J. Topol. Anal. 10 (2018), no. 2, 401-420.
T. Delabie, Large scale geometry of box spaces, PhD thesis, 2018, Université de Neuchâtel.
T. Delabie, A. Khukhro, Box spaces of the free group that neither contain expanders nor embed into a Hilbert space, Adv. Math. 336 (2018), 70-96.
J. Deng, Q. Wang, G. Yu, The coarse Baum-Connes conjecture for certain extensions and relative expanders, (2021), arXiv:2102.10617.
A. Eskenazis, Geometric inequalities and advances in the Ribe program, PhD thesis, 2019, Princeton University.
A. Eskenazis, M. Mendel, A. Naor, Nonpositive curvature is not coarsely universal, Invent. Math. 217 (2019), no. 3, 833-886.
L. Guo, Z. Luo, Q. Wang, Y. Zhang,K-theory of the maximal and reduced Roe algebras of metric spaces with A-by-CE coarse fibrations, (2021), arXiv:2110.15624.
D. Hume, A continuum of expanders, (2014), Fund. Math. 238 (2017), no. 2, 143-152.
A. Khukhro, K. Li, F. Vigolo, J. Zhang, On the structure of asymptotic expanders, Adv. Math. 393 (2021), Paper No. 108073, 35 pp.
K. Li, J. Špakula, J. Zhang, Measured asymptotic expanders and rigidity for Roe algebras, (2020), arXiv:2010.10749.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part II: Fibred coarse embeddings, Anal. Geom. Metr. Spaces 7 (2019), no. 1, 62-108.
T. Pillon, Affine isometric actions of groups, PhD thesis, 2015, Université de Neuchâtel.
M. de la Salle, A duality operators/Banach spaces , (2021), arXiv:2101.07666.
D. Sawicki, J. Wu, Straightening warped cones, Journal of Topology and Analysis (2020), 1-25.
Q. Wang, Y. Zhang, The coarse Novikov conjecture for extensions of coarsely embeddable groups, (2021), arXiv:2105.04753.
J. Xia, X. Wang, Strong embeddability for groups acting on metric spaces, Chin. Ann. Math. Ser. B 40 (2019), no. 2, 199-212.

[40] G.N. Arzhantseva, Asymptotic approximations of finitely generated groups,
in Research Perspectives CRM Barcelona-Fall 2012 (Trends in Mathematics), Birkhäuser, Basel, vol. 1, 2014, 7-16.   pdf
12 citations by


J. Brude, R. Sasyk, Metric approximations of unrestricted wreath products when the acting group is amenable, (2020), arXiv:2004.05735.
V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups and Connes' embedding conjecture, Lecture Notes in Mathematics 2136, Springer 2015.
M. Cavaleri, Algorithms and quantifications in amenable and sofic groups, PhD Thesis, 2016, the Sapienza University of Rome.
M. de Chiffre, Approximate representations of groups, PhD thesis, Technische Universität Dresden (2019).
M. de Chiffre, L. Glebsky, A. Lubotzky, A. Thom, Stability, cohomology vanishing, and non-approximable groups, Forum Math. Sigma 8 (2020), Paper No. e18, 37 pp.
V. Climenhaga, G. Knieper, K. War, Uniqueness of the measure of maximal entropy for geodesic flows on certain manifolds without conjugate points, Adv. Math. 376 (2021), 107452, 44 pp.
M. Dadarlat, Obstructions to matricial stability of discrete groups and almost flat K-theory. Advances in Mathematics 384 (2021), 107722.
D. Enders, T. Shulman, Almost commuting matrices, cohomology, and dimension, (2019), arXiv:1902.10451.
S. Eilers, T. Shulman, A. Sørensen, C*-stability of discrete groups, Adv. Math. 373 (2020), 107324, 41 pp.
L. Glebsky, Approximations of groups, characterizations of sofic groups, and equations over groups, J. Algebra 477 (2017), 147-162.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part I: Coarse embeddings of amenable groups, Journal of Topology and Analysis 13 (2021), no. 1, 1–47.
P. Pueschel, On residual properties of groups and Dehn functions for mapping tori of right angled Artin groups, PhD thesis, 2016, Cornell University.

[39] G.N. Arzhantseva, J.-F. Lafont, A. Minasyan, Isomorphism versus commensurability for a class of finitely presented groups,
Journal of Group Theory, 17(2) (2014), 361-378.   pdf
8 citations by


Y. Antolín, A. Minasyan, Tits alternatives for graph products, J. Reine Angew. Math. 704 (2015), 55-83.
J. Belk, C. Bleak, Some undecidability results for asynchronous transducers and the Brin-Thompson group 2V, Trans. Amer. Math. Soc. 369 (2017), no. 5, 3157-3172.
B. Cavallo, Algorithmic properties of poly-Z groups and secret sharing using non-commutative groups, PhD thesis, 2015, The City University of New York.
F. Dahmani, On suspensions and conjugacy of hyperbolic automorphisms, Trans. Amer. Math. Soc. 368 (2016), no. 8, 5565-5577.
A.D. Logan, On the outer automorphism groups of finitely generated, residually finite groups, J. Algebra 423 (2015), 890-901.
L. Paoluzzi, The notion of commensurability in group theory and geometry, Representation spaces, twisted topological invariants and geometric structures of 3-manifolds (2012), 124-137.
J. R. Peters, P. Sanyatit, Isomorphism of uniform algebras on the 2-torus, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 1, 89-106.
M. Weinstein, On the structure of a poly-group, (2020), arXiv:2012.10510.

[38] G.N. Arzhantseva, E. Guentner, J. Spakula, Coarse non-amenability and coarse embeddings,
Geometric and Functional Analysis [GAFA], 22(1) (2012), 22-36.   pdf
41 citations by


V. Alekseev, M. Finn-Sell, Sofic boundaries of groups and coarse geometry of sofic approximations, Groups Geom. Dyn. 13 (2019), no. 1, 191-234.
C. Anantharaman-Delaroche, Amenability and exactness for groups, group actions and operator algebras, ESI 2007, (version of 2015).
P. Ara, K. Li, F. Lledó, J. Wu, Amenability and uniform Roe algebras J. Math. Anal. Appl. 459 (2018), no. 2, 686-716.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky conjecture, Operator algebras and their applications, 1-33, Contemp. Math., 671, Amer. Math. Soc., Providence, RI, 2016.
M. Bestvina, V. Guiradel, C. Horbez, Boundary amenability of Out(FN), (2017), arXiv:1705.07017.
B. M. Braga, I. Farah, On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces, Trans. Amer. Math. Soc. 374 (2021), no. 2, 1007-1040.
B. M. Braga, I. Farah, A. Vignati, Embeddings of uniform Roe algebras Comm. Math. Phys. 377 (2020), no. 3, 1853-1882.
J. Brodzki, G. Niblo, J. Špakula, R. Willett, N. Wright, Uniform local amenability, J. Noncommut. Geom. 7 (2013), no. 2, 583-603.
K. Boucher, On non-amenable embeddable spaces in relation with free products, (2018), arXiv:1801.04889.
C. Cave, D. Dreesen, A. Khukhro, Embeddability of generalized wreath products and box spaces, (2013), arXiv.org:1307.3122.
M. Cencelj, J. Dydak, A. Vavpetič, Coarse amenability versus paracompactness, J. Topol. Anal. 6 (2014), no. 1, 125-152.
M. Cencelj, J. Dydak, A. Vavpetič, Large scale versus small scale, Recent progress in general topology, III, 165-203, Atlantis Press, Paris, 2014.
X. Chen, Q. Wang, X. Wang, Characterization of the Haagerup property by fibred coarse embedding into Hilbert space, Bull. Lond. Math. Soc. 45 (2013), no. 5, 1091-1099.
Y. C. Chung, Property A and coarse embeddability for fuzzy metric spaces, (2021), arXiv:2102.10258.
Y. Cornulier, P. de la Harpe, Metric geometry of locally compact groups, EMS Tracts in Mathematics Vol. 25, 2016.
K. Das, From the geometry of box spaces to the geometry and measured couplings of groups, J. Topol. Anal. 10 (2018), no. 2, 401-420.
T. Delabie, A. Khukhro, Box spaces of the free group that neither contain expanders nor embed into a Hilbert space, Adv. Math. 336 (2018), 70-96.
J. Deng, Q. Wang, G. Yu, The coarse Baum-Connes conjecture for certain extensions and relative expanders, (2021), arXiv:2102.10617.
M. Finn-Sell, Fibred coarse embeddings, a-T-menability and the coarse analogue of the Novikov conjecture, J. Funct. Anal. 267 (2014), no. 10, 3758-3782.
M. Finn-Sell, Almost quasi-isometries and more non-exact groups, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393-403.
M. Finn-Sell, J. Wu, The asymptotic dimension of box spaces for elementary amenable groups, (2015), arXiv:1508.05018.
M. P. Gomez Aparicio, P. Julg, A. Valette, The Baum–Connes conjecture: an extended survey, In Advances in Noncommutative Geometry (pp. 127-244), 2019, Springer, Cham.
A. R. Harsy Ramsay, Locally compact property A groups, PhD thesis, 2014, Purdue University.
R. Ji, C. Ogle, B. Ramsey, Strong embeddability and extensions of groups, (2013), arXiv.org:1307.1935.
A. Khukhro, Box spaces, group extensions and coarse embeddings into Hilbert space, J. Funct. Anal. 263 (2012), no. 1, 115-128.
A. Khukhro, Embeddable box spaces of free groups, Math. Ann. 360 (2014), no. 1-2, 53-66.
B. Kwaśniewski, K. Li, A. Skalski, The Haagerup property for twisted groupoid dynamical systems, (2020), arXiv:2004.06317.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part I: Coarse embeddings of amenable groups, J. Topol. Anal. 13 (2021), no. 1, 1–47.
D. Osajda, Small cancellation labellings of some infinite graphs and applications, Acta Math. 225 (2020), no. 1, 159-191.
D. Osajda, Group cubization With an appendix by Mikaël Pichot, Duke Math. J. 167 (2018), no. 6, 1049-1055.
M. Ostrovskii, Low-distortion embeddings of graphs with large girth, J. Funct. Anal. 262 (2012), no. 8, 3548-3555.
M. Ostrovskii, Metric Embeddings: Bilipschitz and coarse embeddings into Banach spaces, de Gruyter Studies in Mathematics, Vol. 49, 2013.
D. Pawlik, A (co)homological crieterion for property A of metric space, Uniwersytet Warszawski, Praca semestralna nr 2, 2011/2012.
T. Pillon, Affine isometric actions of groups, PhD thesis, 2015, Université de Neuchâtel.
T. Pillon, Coarse amenability at infinity, (2018), arXiv:1812.11745.
J. Roe, R. Willett, Ghostbusting and property A, J. Funct. Anal. 266 (2014), no. 3, 1674-1684.
H. Sako, A generalization of expander graphs and local reflexivity of uniform Roe algebras, J. Funct. Anal. 265 (2013), no. 7, 1367-1391.
D. Sawicki, Warped cones over profinite completions, J. Topol. Anal. 10 (2018), no. 3, 563-584.
D. Sawicki, J. Wu, Straightening warped cones, Journal of Topology and Analysis (2020), 1-25.
J. Špakula, R. Willett, A metric approach to limit operators, Trans. Amer. Math. Soc. 369 (2017), no. 1, 263-308.
R. Willett, Property A and graphs with large girth, J. Topol. Anal. 3 (2011), no. 3, 377-384.

[37] G.N. Arzhantseva and E. Guentner, Coarse non-amenability and covers with small eigenvalues,
Mathematische Annalen, 354(3) (2012), 863-870.   pdf
4 citations by


K. Das, From the geometry of box spaces to the geometry and measured couplings of groups, J. Topol. Anal. 10 (2018), no. 2, 401-420.
A. Khukhro, A. Valette, Expanders and box spaces Adv. Math. 314 (2017), 806-834.
V. Manuilov, On a family of representations of residually finite groups, Algebr. Represent. Theory 23 (2020), no. 4, 1727-1735.
E. le Masson, T. Sahlsten, Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces, Duke Math. J. 166 (2017), no. 18, 3425-3460.

[36] G.N. Arzhantseva, M. Bridson, T. Januszkiewicz, I. Leary, A. Minasyan, J. Swiatkowski, Infinite groups with fixed point properties,
Geometry & Topology, 13 (2009), 1229-1263.   pdf
27 citations by


A. Bartels, K-theory and actions on Euclidean retracts In Proceedings of the International Congress of Mathematicians(ICM 2018), pp. 1041-1062 (2019).
I. Belegradek, Topology of open nonpositively curved manifolds, Geometry, topology, and dynamics in negative curvature, 32-83, London Math. Soc. Lecture Note Ser., 425, Cambridge Univ. Press, Cambridge, 2016.
I. Belegradek, Ph. Nguyễn, T. Tâm, Non-aspherical ends and non-positive curvature, Trans. Amer. Math. Soc. 368 (2016), no. 8, 5363-5376.
R. Biswas, Categories of modules over infinite groups, PhD thesis, 2021, University of Manchester.
M. Bridson, On the dimension of CAT(0) spaces where mapping class groups act, J. Reine Angew. Math. 673 (2012), 55-68.
M. Bridson, K. Vogtmann, Actions of automorphism groups of free groups on homology spheres and acyclic manifolds, Comment. Math. Helv. 86 (2011), no. 1, 73-90.
I. Chatterji, M. Kassabov, New examples of finitely presented groups with strong fixed point properties, J. Topol. Anal. 1 (2009), no. 1, 1-12.
Y. Cornulier, Group actions with commensurated subsets, wallings and cubings, (2013), arXiv:1302.5982.
O. Cotton-Barratt, Detecting ends of residually finite groups in profinite completions, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 3, 379–389.
P. Dani, The large-scale geometry of right-angled Coxeter groups, (2018), arXiv:1807.08787.
D. Fisher, L. Silberman, Groups not acting on manifolds, Int. Math. Res. Not. 16 (2008), 11 pp.
D. Futer, A. Thomas, Surface quotients of hyperbolic buildings, Int. Math. Res. Not. IMRN 2012, no. 2, 437-477.
G. Gandini, Bounding the homological finiteness length, Bull. Lond. Math. Soc. 44 (2012), no. 6, 1209-1214.
G. Gandini, Cohomological invariants and the classifying space for proper actions, Groups Geom. Dyn. 6 (2012), no. 4, 659-675.
T. Januszkiewicz, P.H. Kropholler, I.J. Leary, Groups possessing extensive hierarchical decompositions, Bull. Lond. Math. Soc. 42 (2010), no. 5, 896-904.
S. John-Green, Cohomological finiteness properties of groups, PhD thesis, 2014, University of Southampton.
J. H. Kim, On the actions of Higman-Thompson groups by homeomorphisms, Bull. Korean Math. Soc. 57 (2020), no. 2, 449-457.
R. Kropholler, Finiteness Properties and CAT(0) groups, PhD thesis, 2016, University of Oxford.
A. Kubena, A. Thomas, Density of commensurators for uniform lattices of right-angled buildings, J. Group Theory 15 (2012), no. 5, 565–611.
A. Minasyan, D. Osin, Acylindrically hyperbolic groups with exotic properties J. Algebra 522 (2019), 218-235.
A. Minasyan, D. Osin, S. Witzel, Quasi‐isometric diversity of marked groups. Journal of Topology 14 (2021), no. 2, 488-503.
A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compos. Math. 147 (2011), no. 5, 1546-1572.
D. Osajda, A construction of hyperbolic Coxeter groups, Comment. Math. Helv. 88 (2013), no. 2, 353-367.
D. Osajda, P. Przytycki, Boundaries of systolic groups, Geom. Topol. 13 (2009), no. 5, 2807-2880.
D. Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Annals of Mathematics, 172 (2010), 1-39.
Sh. Weinberger, Some remarks inspired by the C0 Zimmer program, Geometry, rigidity, and group actions, 262-282, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011.

[35] G.N. Arzhantseva, C. Drutu, and M. Sapir, Compression functions of uniform embeddings of groups into Hilbert and Banach spaces,
Journal für die Reine und Angewandte Mathematik, [Crelle's Journal], 633 (2009), 213-235.   pdf
31 citations by


C. Anantharaman-Delaroche, Amenability and exactness for groups, group actions and operator algebras, (2007), http://www.univ-orleans.fr/mapmo/membres/anantharaman/publications/ESI07.pdf
T. Austin, Amenable groups with very poor compression into Lebesgue spaces, Duke Math. J. 159 (2011), no. 2, 187–222.
T. Austin, A finitely-generated amenable group with very poor compression into Lebesgue spaces, (2009), arXiv:0909.2047.
T. Austin, A. Naor, Y. Peres, The wreath product of Z with Z has Hilbert compression exponent 2/3, Proc. Amer. Math. Soc. 137 (2009), no. 1, 85-90.
L. Bartholdi, A. Erschler, Distortion of imbeddings of groups of intermediate growth into metric spaces, Proc. Amer. Math. Soc. 145 (2017), no. 5, 1943–1952.
F. P. Baudier, Quantitative nonlinear embeddings into Lebesgue sequence spaces, J. Topol. Anal. 8 (2016), no. 1, 117–150.
F. P. Baudier, On the metric geometry of stable metric spaces, (2014), arXiv:1409.7738
F. P. Baudier, P. Motakis, T. Schlumprecht, A. Zsák, Stochastic approximation of lamplighter metrics, (2020), arXiv:2003.06093.
J.-C. Birget, One-way permutations, computational asymmetry and distortion, J. Algebra 320 (2008), no. 11, 4030-4062.
J. Brieussel, T. Zheng, Speed of random walks, isoperimetry and compression of finitely generated groups, (2015), Ann. of Math. (2) 193 (2021), no. 1, 1-105.
Ch. Cave, D. Dreesen, Equivariant compression of certain direct limit groups and amalgamated free products, Glasg. Math. J. 58 (2016), no. 3, 739–752.
J. Cheeger, B. Kleiner, A. Naor, Compression bounds for Lipschitz maps from the Heisenberg group to L1, Acta Math. 207 (2011), no. 2, 291–373.
A. Dranishnikov, M. Sapir, On the dimension growth of groups, J. Algebra 347 (2011), 23–39.
D. Dreesen, Equivariant and non-equivariant uniform embeddings into products and Hilbert spaces, PhD thesis, 2011, Université de Neuchâtel.
D. Dreesen, Hilbert space compression for free products and HNN-extensions, J. Funct. Anal. 261 (2011), no. 12, 3585–3611.
S. Gal, Asymptotic dimension and uniform embeddings, Groups Geom. Dyn. 2 (2008), no. 1, 63-84.
J. Higes, I. Peng, Assouad-Nagata dimension of connected Lie groups, Math. Z. 273 (2013), no. 1-2, 283–302.
D. Hume, A continuum of expanders, (2014), Fund. Math. 238 (2017), no. 2, 143-152.
P.-N. Jolissaint, Embeddings of groups into Banach spaces, PhD thesis, 2015, University of Neuchatel.
M. Kraus, Quantitative coarse embeddings of quasi-Banach spaces into a Hilbert space, (2015), arXiv:1511.05214.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part I: Coarse embeddings of amenable groups, J. Topol. Anal. 13 (2021), no. 1, 1–47.
A. Naor, An introduction to the Ribe program, Jpn. J. Math. 7 (2012), no. 2, 167–233.
A. Naor, L1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry, Proceedings of the International Congress of Mathematicians, Volume III, 1549–1575, Hindustan Book Agency, New Delhi, 2010.
A. Naor, Y. Peres, Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 076, 34 pp.
A. Naor, Y. Peres, Lp compression, traveling salesmen, and stable walks, Duke Math. J. 157 (2011), no. 1, 53–108.
P. Nowak, G. Yu, Large-scale geometry, EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2012, xiv+189pp.
A. Yu. Olshanskii, D.V. Osin, A quasi-isometric embedding theorem for groups, Duke Math. J. 162 (2013), no. 9, 1621–1648.
T. Pillon, Affine isometric actions of groups, PhD thesis, 2015, Université de Neuchâtel.
R. J. Putwain, Partial translation algebras for certain discrete metric spaces, PhD thesis, 2010, University of Southhampton.
J.C. Robinson, Log-Lipschitz embeddings of homogeneous sets with sharp logarithmic exponents and slicing products of balls, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1275–1288.
M. Sapir, Some group theory problems, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 1189-1214.

[34] G.N. Arzhantseva, V.S. Guba, M. Lustig and J.-Ph. Préaux, Testing Cayley graph densities,
Annales mathematiques Blaise Pascal, 15(2) (2008), 169-221.   pdf
7 citations by


J. Cannon, Amenability, Folner sets, and cooling functions, (2009).
M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, Random sampling of trivial words in finitely presented groups, Exp. Math. 24 (2015), no. 4, 391–409.
M. Elder, C. Rogers, Sub-dominant cogrowth behaviour and the viability of deciding amenability numerically, Exp. Math. 28 (2019), no. 1, 67–80.
M. Elder, A. Rechnitzer, T. Wong, On the cogrowth of Thompson's group F, Groups Complex. Cryptol. 4 (2012), no. 2, 301–320.
M. Elder and A. Rechnitzer and E. J. Janse van Rensburg and T. Wong, On trivial words in finitely presented groups, (2012), arXiv:1210.3425.
V. S. Guba, On the density of Cayley graphs of R. Thompson’s group F in symmetric generators, International Journal of Algebra and Computation (2021), 1-13.
S. Haagerup, U. Haagerup, M. Ramirez-Solano, A computational approach to the Thompson group F, Internat. J. Algebra Comput. 25 (2015), no. 3, 381–432.

[33] G.N. Arzhantseva, A. Minasyan and D. Osin, The SQ-universality and residual properties of relatively hyperbolic groups,
Journal of Algebra, 315(1) (2007), 165-177.   pdf
50 citations by


C. Abbott, S. Balasubramanya, D. Osin, Hyperbolic structures on groups, (2017), Algebr. Geom. Topol. 19 (2019), no. 4, 1747–1835.
Y. Antolín, A. Minasyan, A. Sisto, Commensurating endomorphisms of acylindrically hyperbolic groups and applications, Groups Geom. Dyn. 10 (2016), no. 4, 1149–1210.
S. Balasubramanya, Hyperbolic structures on Groups, PhD theis, 2018, Vanderbilt University.
J. Behrstock, M. Hagen, A. Sisto, Thickness, relative hyperbolicity, and randomness in Coxeter groups, With an appendix written jointly with P.-E. Caprace. Algebr. Geom. Topol. 17(2) (2017), 705–740.
I. Belegradek, Rigidity and relative hyperbolicity of real hyperbolic hyperplane complements, Pure Appl. Math. Q. 8 (2012), no. 1, 15–51.
I. Belegradek, D. Osin, Rips construction and Kazhdan property (T), Groups Geom. Dyn. 2 (2008), no. 1, 1-12.
I. Belegradek, A. Szczepanski, Endomorphisms of relatively hyperbolic groups, with an appendix by Oleg V. Belegradek, Internat. J. Algebra Comput. 18 (2008), no. 1, 97-110.
I. Belegradek, T. Tâm Nguyễn Phan, Non-aspherical ends and non-positive curvature, Trans. Amer. Math. Soc. 368 (2016), 5363-5376.
D. Bisch, R. Nicoara, S. Popa, Continuous families of hyperfinite subfactors with the same standard invariant, Internat. J. Math. 18 (2007), no.3, 255-267.
O. Bogopolski, K.-U. Bux, From local to global conjugacy of subgroups of relatively hyperbolic groups, Internat. J. Algebra Comput. 27(3) (2017), 299-314.
I. Bumagin, M. M. Zhang, On fully residually-R groups, Comm. Algebra 44 (2016), no. 7, 2813–2827.
J. O. Button, Large groups of deficiency 1, Israel J. Math. 167 (2008), 111-140.
J. O. Button, Acylindrical hyperbolicity, non-simplicity and SQ-universality of groups splitting over Z, J. Group Theory, 20(2), 371–383.
J. O. Button, R. P. Kropholler, Nonhyperbolic free-by-cyclic and one-relator groups, New York J. Math. 22 (2016), 755–774.
P.-E. Caprace, N. Monod, Isometry groups of non-positively curved spaces: discrete subgroups, J. Topology 2 (2009), no. 4, 701-746.
I. Chifan, A. Diaz-Arias, D. Drimbe, New examples of W* and C*-superrigid groups, (2020), arXix:2010.01223.
I. Chifan, S. Das, K. Khan, Some applications of group theoretic Rips constructions to the classification of von Neumann algebras, (2019), arXiv:1911.11729.
I. Chifan, B. T. Udrea, Some rigidity results for II1 factors arising from wreath products of property (T) groups, J. Funct. Anal. 278 (2020), no. 7, 108419, 32 pp.
R. Coulon, D. Osin, A non-residually finite group acting uniformly properly on a hyperbolic space, (2018), arXiv:1804.09432.
F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
M. Edjvet, A. Vdovina, On the SQ-universality of groups with special presentations, J. Group Theory (2010), 1433-5883.
I. Fernández Martínez, D. Serbin, Detecting conjugacy stability of subgroups in certain classes of groups, J. Group Theory (2021), to appear.
R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional graph manifolds, Astérisque No. 372 (2015), xxi+177 pp.
D. Fisher, L. Silberman, Groups not acting on manifolds, Int. Math. Res. Not. IMRN 2008, no. 16, Art. ID rnn060, 11 pp.
Le Thi Giang, The relative hyperbolicity of one-relator relative presentations, J. Group Theory 12 (2009), no. 6, 949-959.
M. Hull, Small cancellation in acylindrically hyperbolic groups, Groups Geom. Dyn. 10 (2016), no. 4, 1077–1119.
M. Hull, D. Osin, Conjugacy growth of finitely generated groups, Adv. Math. 235 (2013), 361–389.
T. Januszkiewicz, P. Kropholler, I. Leary, Groups possessing extensive hierarchical decompositions, Bull. Lond. Math. Soc. 42 (2010), no. 5, 896–904.
Y. Jiang, Maximal von Neumann subalgebras arising from maximal subgroups, (2019), arXiv:1911.10483.
K. Khan, Fundamental groups of certain von Neumann algebras, PhD thesis, (2020), Vanderbilt University.
Ant. A. Klyachko, SQ-universality of one-relator relative presentations, Sb. Math. 197 (2006), no. 9-10, 1489-1508.
Ant. A. Klyachko, D. E. Lurye, Relative hyperbolicity and similar properties of one-generator one-relator relative presentations with powered unimodular relator, J. Pure Appl. Algebra 216 (2012), no. 3, 524–534.
D. Lee, Non-Hopfian SQ-universal groups, East Asian Math. J.Vol. 34 (2018), No. 5, pp. 587–595.
E. Martinez-Pedroza, On quasiconvexity and relatively hyperbolic structures on groups, Geom. Dedicata 157 (2012), 269–290.
Y. Matsuda, O. Shin-ichi, On Cannon-Thurston maps for relatively hyperbolic groups, J. Group Theory 17 (2014), no. 1, 41–47.
Y. Matsuda, O. Shin-ichi, Y. Saeko, The universal relatively hyperbolic structure on a group and relative quasiconvexity for subgroups, (2011), arXiv:1106.5288.
Y. Matsuda, O. Shin-ichi, Y. Saeko, C*-simplicity for groups with non-elementary convergence group actions, Houston J. Math. 39 (2013), no. 4, 1291–1299.
M. Mihalik, E. Swenson, Relatively hyperbolic groups with semistable fundamental group at infinity J. Topol. 14 (2021), no. 1, 39–61.
A. Minasyan, Groups with finitely many conjugacy classes and their automorphisms, Comment. Math. Helv. 84 (2009), no. 2, 259-296.
A. Minasyan, D. Osin, Normal automorphisms of relatively hyperbolic groups, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6079-6103.
A. Minasyan, D. Osin, Acylindrical hyperbolicity of groups acting on trees, Math. Ann. 362 (2015), no. 3-4, 1055–1105.
A. Ol'shanskii, D. Osin, C*-simple groups without free subgroups, Groups Geom. Dyn. 8 (2014), no. 3, 933–983.
A. Ol'shanskii, D. Osin, M. Sapir, Lacunary hyperbolic groups, Geom. Topol. 13 (2009), no. 4, 2051-2140.
D. Osin, A topological zero-one law and elementary equivalence of finitely generated groups, Ann. Pure Appl. Logic 172 (2021), no. 3, 102915, 36 pp.
D. Osin, Groups acting acylindrically on hyperbolic spaces, (2017), arXiv:1712.00814.
D. Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Annals of Mathematics, 172 (2010), 1-39.
D. Osin, On the universal theory of torsion and lacunary hyperbolic groups, (2009), arXiv:0903.3978.
D. Osin, A. Thom, Normal generation and ℓ2-Betti numbers of groups, Math. Ann. 355 (2013), no. 4, 1331–1347.
D. Witte Morris, Introduction to arithmetic groups, 2015. xii+475 pp.
M. M. Zhang, On properties of relatively hyperbolic groups, PhD thesis, 2017, Carleton University.

[32] G.N. Arzhantseva and Z. Sunic, Construction of elements in the closure of Grigorchuk group,
Geometriae Dedicata, 124(1) (2007), 17-26.   pdf
4 citations by


M. Saltan, The relation between adding machne and p-adic integers, Konuralp Journal of Mathematics, 1(2) (2013), 41-49.
B. Demir, M. Saltan, On p-adic integers and the adding machine group, (2010), arXiv:1007.0366.
A. Penland, Nearly maximal Hausdorff dimension in finitely constrained groups, (2017), arXiv:1710.05261.
O. Siegenthaler, Discrete and profinite groups acting on regular rooted trees, PhD thesis, Georg-August-Universität Göttingen, 2009, http://webdoc.sub.gwdg.de/diss/2010/siegenthaler/siegenthaler.pdf

[31] G.N. Arzhantseva, A. Minasyan, Relatively hyperbolic groups are C*-simple,
Journal of Functional Analysis, 243(1) (2007), 345-351.   pdf
19 citations by


C. R. Abbott, F. Dahmani, Property Pnaive for acylindrically hyperbolic groups, Math. Z. 291 (2019), no. 1-2, 555–568.
C. Abbot, M. Hull, Random walks and quasi-convexity in acylindrically hyperbolic groups, (2020), arXiv:1909.10876.
S.I. Adyan, V.S. Atabekyan, C*-simplicity of n-periodic products, (Russian) ; translated from Mat. Zametki 99 (2016), no. 5, 643-648 Math. Notes 99 (2016), no. 5-6, 631–635.
V.S. Atabekyan, The set of 2-generated C*-simple relatively free groups has the cardinality of the continuum, Proceedings of the Yerevan State University, Physical and Mathematical Sciences (2020),54(2), p. 81–86.
F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
A. Fel'shtyn, E. Troitsky, Twisted conjugacy classes in residually finite groups, (2012), arXiv:1204.3175.
R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional graph manifolds, Astérisque No. 372 (2015), xxi+177 pp.
Sh. Gong, Property RD and the classification of traces on reduced group C*-algebras of hyperbolic groups, J. Topol. Anal. 9 (2017), no. 4, 707–716.
P. de la Harpe, On simplicity of reduced C*-algebras of groups, Bull. Lond. Math. Soc. 39 (2007), no. 1, 1-26.
Sh. Hejazian, S. Pooya, Simple reduced Lp-operator crossed products with unique trace, J. Operator Theory 74 (2015), no. 1, 133–147.
A. Kar, M. Sageev, Ping pong on CAT(0) cube complexes, Comment. Math. Helv. 91 (2016), no. 3, 543–561.
A. Le Boudec, C*-simplicity and the amenable radical, Invent. Math. 209 (2017), no. 1, 159–174.
A. Le Boudec, Groups of automorphisms and almostautomorphisms of trees: subgroups anddynamics, (2016), Lecture notes, https://www.matrix-inst.org.au/wp_Matrix2016/wp-content/uploads/2017/08/LeBoudec.pdf.
M. Kalantar, M. Kennedy, Boundaries of reduced C*-algebras of discrete groups, (2014), arXiv:1405.4359.
E. Martínez-Pedroza, Combination of quasiconvex subgroups of relatively hyperbolic groups, Groups Geom. Dyn. 3 (2009), no. 2, 317-342.
E. Martinez-Pedroza, On quasiconvexity and relatively hyperbolic structures on groups, Geom. Dedicata 157 (2012), 269–290.
Y. Matsuda, S. Oguni, S. Yamagata, C*-simplicity for groups with non-elementary convergence group actions, Houston J. Math. 39 (2013), no. 4, 1291–1299.
A. Yu. Olshanskii, D. V. Osin, C*-simple groups without free subgroups, Groups Geom. Dyn. 8 (2014), no. 3, 933–983.
R. D. Tucker-Drob, Shift-minimal groups, fixed price 1, and the unique trace property, (2012), arXiv:1211.6395.

[30] G.N. Arzhantseva, P. de la Harpe, D. Kahrobaei, The true prosoluble completion of a group: Examples and open problems,,
Geometriae Dedicata, 124(1) (2007), 5-17.   pdf
12 citations by


F. Berlai, Residual properties of free products, Comm. Algebra 44 (2016), no. 7, 2959–2980.
K. Bencsath, A. Douglas, D. Kahrobaei, Some residually solvable one-relator groups, Irish Math. Soc. Bulletin 65 (2010), 23-31.
S. Friedl, S.Vidussi, Twisted Alexander polynomials detect fibered 3-manifolds, Ann. of Math. (2) 173 (2011), no. 3, 1587–1643.
S. Friedl, S. Vidussi, Twisted Alexander polynomials and fibered 3-manifolds. Low-dimensional and symplectic topology, 111–130, Proc. Sympos. Pure Math., 82, Amer. Math. Soc., Providence, RI, 2011.
D. Kahrobaei, Doubles of residually solvable groups in B. Fine, G. Rosenberger, D. Spellman (eds), Aspects of Infinite Group Theory, Algebra and Discrete Mathematics, World Scientific, 1 (2008), 192-200.
D. Kahrobaei, On the residual solvability of generalized free products of finitely generated nilpotent groups, Comm. Algebra 39 (2011), no. 2, 647–656.
D. Kahrobaei, A. F. Douglas, K. Bencsáth, Some residually solvable one-relator groups, (2013), arXiv:1310.5241.
D. Kahrobaei, S. Majewicz, On the residual solvability of generalized free products of solvable groups, Discrete Math. Theor. Comput. Sci. 13 (2011), no. 4, 45–50.
Yu. Leonov, On the closure of the first Grigorchuk group, (Russian); translated from Ukr. Mat. Visn. 7 (2010), no. 1, 39--48, 135 J. Math. Sci. (N.Y.) 173 (2011), no. 4, 371–377.
G. Mantika, D. Tieudjo, On the group of continuous automorphisms of some profinite groups, Lobachevskii J. Math. 39 (2018), no. 2, 243–251.
O. Siegenthaler, A. Zugadi-Reizabal, The equations satisfied by GGS-groups and the abelian group structure of the Gupta-Sidki group, European J. Combin. 33 (2012), no. 7, 1672–1690.
O. Siegenthaler, Discrete and profinite groups acting on regular rooted trees, PhD thesis, Georg-August-Universität Göttingen, 2009, http://webdoc.sub.gwdg.de/diss/2010/siegenthaler/siegenthaler.pdf.

[29] G.N. Arzhantseva, V.S. Guba, M.V. Sapir, Metrics on diagram groups and uniform embeddings in a Hilbert space,,
Commentarii Mathematici Helvetici, 81(4) (2006), 911-929.   pdf
47 citations by


C. Anantharaman-Delaroche, Amenability and exactness for groups, group actions and operator algebras, (2007), http://www.univ-orleans.fr/mapmo/membres/anantharaman/publications/ESI07.pdf.
T. Austin, A finitely-generated amenable group with very poor compression into Lebesgue spaces, (2009), arXiv:0909.2047.
T. Austin, A. Naor, Y. Peres, The wreath product of Z with Z has Hilbert compression exponent 2/3, Proc. Amer. Math. Soc. 137 (2009), no. 1, 85-90.
T. Austin, Amenable groups with very poor compression into Lebesgue spaces, Duke Math. J. 159 (2011), no. 2, 187–222.
J.-C. Birget, One-way permutations, computational asymmetry and distortion, J. Algebra 320 (2008), no. 11, 4030-4062.
J. Brieussel, T. Zheng, Speed of random walks, isoperimetry and compression of finitely generated groups, Ann. of Math. (2) 193 (2021), no. 1, 1–105.
N. Brodskiy, D. Sonkin, Compression of uniform embeddings into Hilbert space, Topology Appl. 155 (2008), no. 7, 725-732.
N. Brown, E. Guentner, New C*-completions of discrete groups and related spaces, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1181–1193.
S. J. Campbell, Property A and affine buildings, J. Funct. Anal. 256 (2009), no. 2, 409-431.
Ch. Cave, D. Dreesen, Equivariant compression of certain direct limit groups and amalgamated free products, Glasg. Math. J. 58 (2016), no. 3, 739–752.
Y. de Cornulier, Y. Stalder, A. Valette, Proper actions of wreath products and generalizations, Trans. Amer. Math. Soc. 364 (2012), no. 6, 3159–3184.
C. le Coz, A. Gournay, Separation profiles, isoperimetry, growth and compression, (2019), arXiv:1910.11733.
A. Dranishnikov, M. Sapir, On the dimension growth of groups, J. Algebra 347 (2011), 23–39.
D. Dreesen, Hilbert space compression under direct limits and certain group extensions, Proc. Amer. Math. Soc. 141 (2013), no. 2, 421–436.
A. Eskenazis, Geometric inequalities and advances in the Ribe program, PhD thesis, 2019, Princeton University.
S. Gal, Asymptotic dimension and uniform embeddings, Groups Geom. Dyn. 2 (2008), no. 1, 63-84.
A. Genevois, Lamplighter groups, median spaces, and Hilbertian geometry, (2017), arXiv:1705.00834.
A. Genevois, Hyperplanes of Squier's cube complexes, Algebr. Geom. Topol. 18 (2018), no. 6, 3205–3256.
A. Genevois, Embeddings into Thompson's groups from quasi-median geometry, Groups Geom. Dyn. 13 (2019), no. 4, 1457–1510.
A. Genevois, Cubical-like geometry of quasi-median graphs and applications to geometric group theory, (2017), arXiv:1712.01618.
A. Genevois, R. Tessera, Asymptotic geometry of lamplighters over one-ended groups, (2021), arXiv:2105.04878.
R. Gray, A. Malheiro, S. Pride, Homotopy bases and finite derivation type for Schützenberger groups of monoids, J. Symbolic Comput. 50 (2013), 50–78.
R. Gray, A. Malheiro, S. Pride, On properties not inherited by monoids from their Schützenberger groups, Inform. and Comput. 209 (2011), no. 7, 1120–1134.
G. Golan, M. Sapir, On the stabilizers of finite sets of numbers in the R. Thompson group F, Algebra i Analiz 29 (2017), no. 1, 70–110;
A. Gournay, The Liouville property and Hilbertian compression, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2435–2454.
V. Guba, M. Sapir, Diagram groups and directed 2-complexes: homotopy and homology, J. Pure Appl. Algebra 205 (2006), no. 1, 1-47.
V. Guba, M. Sapir, On the conjugacy growth functions of groups, Illinois J. Math. 54 (2010), no. 1, 301–313.
U. Haagerup, G. Picioroaga, New presentations of Thompson's groups and applications, J. Operator Theory 66 (2011), no. 1, 217–232.
P.-N. Jolissaint, Embeddings of groups into Banach spaces, PhD thesis, 2015, University of Neuchatel.
V. Kaimanovich, Thompson's group F is not Liouville, Groups, Graphs and Random Walks, London Mathematical Society Lecture Note Series, 300-342, 2017.
E. Kirchberg, A. Sierakowski, Strong pure infiniteness of crossed products, Ergodic Theory Dynam. Systems 38 (2018), no. 1, 220–243.
S. Li, Compression bounds for wreath products, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2701-2714.
A. Naor, Y. Peres, Lp compression, traveling salesmen, and stable walks, Duke Math. J. 157 (2011), no. 1, 53–108.
A. Naor, Y. Peres, Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 076, 34 pp.
P. Nowak, On exactness and isoperimetric profiles of discrete groups, J. Funct. Anal. 243 (2007), no. 1, 323-344.
P. Nowak, G. Yu, Large-scale geometry, (2010), EMS publishing house, to appear, http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf.
A. Olshanskii, D. Osin, A quasi-isometric embedding theorem for groups, Duke Math. J. 162 (2013), no. 9, 1621–1648.
S. Passidis, A. Weston, Manifestations of non linear roundness in analysis, discrete geometry and topology, in Limits of graphs in group theory and computer science by G. Arzhantseva, A.Valette (eds.), EPFL press, 2009.
S. Pride, Universal diagram groups with identical Poincaré series, Groups Geom. Dyn. 4 (2010), no. 4, 901–908.
D.-T. Salajan, CAT(0) geometry for The Thompson Group, (2012), arXiv:1203.5749.
A. Sale, Metric behaviour of the Magnus embedding, Geom. Dedicata 176 (2015), 305–313.
M. Sapir, Some group theory problems, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 1189-1214.
Y. Stalder, A. Valette, Wreath products with the integers, proper actions and Hilbert space compression, Geom. Dedicata 124 (2007), 199-211.
R. Tessera, Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces, Geom. Dedicata 136 (2008), 203-220.
R. Tessera, Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces, Comment. Math. Helv. 86 (2011), no. 3, 499–535.
G. Yu, Higher index theory of elliptic operators and geometry of groups, International Congress of Mathematicians. Vol. II, 1623-1639, Eur. Math. Soc., Zürich, 2006.
J. Brieussel, T. Zheng, Speed of random walks, isoperimetry and compression of finitely generated groups, (2015), Ann. of Math. (2) 193 (2021), no. 1, 1-105.

[28] G.N. Arzhantseva, A dichotomy for finitely generated subgroups of word hyperbolic groups,,
Contemporary Mathematics, 394, Amer. Math.Soc., Providence, RI, 2006, 1-11.   pdf
11 citations by


A. Bartels, W. Lück, The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. of Math. (2) 175 (2012), no. 2, 631–689.
M. Belolipetsky, On 2-systoles of hyperbolic 3-manifolds, Geom. Funct. Anal. 23 (2013), no. 3, 813–827.
R. Coulon, Asphericity and small cancellation theory for rotation families of groups, Groups Geom. Dyn. 5 (2011), no. 4, 729–765.
M. Gromov, Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009), no. 3, 743-841.
D. Hume, Direct embeddings of relatively hyperbolic groups with optimal ℓp compression exponent, J. Reine Angew. Math. 703 (2015), 147–172.
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, R. Weidmann, Nielsen methods and groups acting on hyperbolic spaces, Geom. Dedicata 98 (2003), 95-121.
T. Koberda, Entropy of automorphisms, homology and the intrinsic polynomial structure of nilpotent groups, In the tradition of Ahlfors-Bers. VI, 87–99, Contemp. Math., 590, Amer. Math. Soc., Providence, RI, 2013.
A. Kvaschuk, One variable equations in torsion-free hyperbolic groups, PhD thesis, 2003, University of New York.
H. Reza Rostami, About groups with property (U), Armenian journal of mathematics, 3(1) (2008), 14-22.

[27] G.N. Arzhantseva and I.G. Lysenok, A lower bound on the growth of word hyperbolic groups,,
Journal of the London Mathematical Society, (2) 73 (2006), 109-125.   pdf
14 citations by


E. Breuillard, K. Fujiwara, On the joint spectral radius for isometries of non-positively curved spaces and uniform growth , Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 317-391.
J. Button, Non proper HNN extensions and uniform uniform exponential growth, (2009), arXiv.org:0909.2841.
N. Cavalluchi, Packing conditions in metric spaces with curvaturebounded above and applications, PhD thesis, 2020, Universià di Roma.
N. Cavallucci, A. Sambusetti, Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces, (2021), arXiv:2102.09829.
F. Cerocchi, A. Sambusetti, Entropy and finiteness of groups with acylindrical splittings, (2017), arXiv:1711.06210.
R. Coulon, M. Steenbock, Product set growth in Burnside groups, (2021), arXiv:2102.10885.
Y. Cui, Y. Jiang, W. Yang, Lower bound on growth of non-elementary subgroups in relatively hyperbolic groups, 2021, arXiv:2103.02304.
T. Delzant, M. Steenbock, Product set growth in groups and hyperbolic geometry, J. Topol. 13 (2020), no. 3, 1183–1215.
D. Dikranjan, A. Giordano Bruno, Topological entropy and algebraic entropy for group endomorphisms, (2013), arXiv:1308.4019.
K. Fujiwara, The rates of growth in an acylindrically hyperbolic group, (2021), arXiv:2103.01430.
K. Fujiwara, Z. Sela, The rates of growth in a hyperbolic group, (2020), arXiv:2002.10278.
L. Ji, A tale of two groups: arithmetic groups and mapping class groups, Handbook of Teichmüller theory. Volume III, 157–295, IRMA Lect. Math. Theor. Phys., 17, Eur. Math. Soc., Zürich, 2012.
R. Kropholler, R. Alanza Lyman, T. Ng, Extensions of hyperbolic groups have locally uniform exponential growth, 2020, arXiv:2012.14880.
F. Zuddas, Some finiteness results for groups with bounded algebraic entropy, Geom. Dedicata (2009), 49-62.

[26] G.N. Arzhantseva, V.S. Guba, L. Guyot, Growth rates of amenable groups,,
Journal of Group Theory, 8 (2005), no.3, 389-394.   pdf
5 citations by


I. Benjamini, T. Gelander, An upper bound on the growth of Dirichlet tilings of hyperbolic spaces, J. Topol. Anal. 9 (2017), no. 2, 221–224.
V. Capraro, Amenability, locally finite spaces, and bi-Lipschitz embeddings, Expo. Math. 31 (2013), no. 4, 334–349.
V. Capraro, Topology on locally finite metric spaces, (2011), arXiv:1111.0268.
T. Ceccherini-Silberstein, R. I. Grigorchuk, P. de la Harpe, Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces, (2016), arXiv:1603.04212.
V. Guba, Strict dead-end elements in free soluble groups, Comm. Algebra 36 (2008), no. 5, 1988–1997.

[25] G.N. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, Uniform non-amenability,
Advances in Mathematics, 197 (2005), no. 2, 499-522.   pdf
34 citations by


S.I. Adyan, V.S. Atabekyan, Characteristic properties and uniform non-amenability of n-periodic products of groups, (Russian) ; translated from Izv. Ross. Akad. Nauk Ser. Mat. 79 (2015), no. 6, 3--17 Izv. Math. 79 (2015), no. 6, 1097–1110.
Y. Amirou, Elements of uniformly bounded word-length in groups, (2018), arXiv:1811.11464.
J. Anderson, J. Aramayona, K.J. Shackleton, Amenability and non-uniform growth of some directed automorphism groups of a rooted tree, Uniformly exponential growth and mapping class groups of surfaces, In the tradition of Ahlfors-Bers. IV, 1-6, Contemp. Math., 432, Amer. Math. Soc., Providence, RI, 2007.
V. Atabekyan, Uniform nonamenability of subgroups of free Burnside groups of odd period, Math. Notes, 85 (4) (2009), 496-502.
V. Atabekyan, On monomorphisms of free Burnside groups, (Russian) ; translated from Mat. Zametki 86 (2009), no. 4, 483-490 Math. Notes 86 (2009), no. 3-4, 457–462.
J. Bannon, M. Ravichandran, A Følner invariant for type II1 factors, Expo. Math. 25 (2007), no. 2, 117-130.
L. Bartholdi, A. Erschler, Ordering the space of finitely generated groups, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 2091–2144.
E. Breuillard, K. Fujiwara, On the joint spectral radius for isometries of non-positively curved spaces and uniform growth, Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 317-391.
E. Breuillard, T. Gelander, Uniform independence in linear groups, Invent. Math. 173 (2008), no. 2, 225-263.
E. Breuillard, T. Gelander, Cheeger constant and algebraic entropy of linear groups, Int. Math. Res. Not. (2005), no. 56, 3511-3523.
E. Breuillard, B. Green, T. Tao, A note on approximate subgroups of GL_n(C) and uniformly nonamenable groups, (2011), arXiv:1101.2552.
N. Brown, N. Ozawa, C*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88. American Mathematical Society, Providence, RI, 2008. xvi+509 pp.
J. Burillo, Grups i la paradoxa de Banach-Tarski, Butlletí de la Societat Catalana de Matemàtiques,Vol. 23, núm. 2, 2008. Pàg. 181-199.
Y. de Cornulier, L. Guyot, W. Pitsch, On the isolated points in the space of groups, J. Algebra 307 (2007), no. 1, 254-277.
Y. de Cornulier, L. Guyot. W. Pitsch, The space of subgroups of an abelian group, (2008), arXiv:0811.1549.
M. Ershov, Kazhdan quotients of Golod-Shafarevich groups. Proc. Lond. Math. Soc. (3) 102 (2011), no. 4, 599–636.
M. Ershov, A. Jaikin-Zapirain, Kazhdan quotients of Golod-Shafarevich groups, (2009), arXiv:0908.3734.
L. Guyot, Y. Stalder, Limits of Baumslag-Solitar groups and dimension estimates in the space of marked groups, Groups Geom. Dyn. 6 (2012), no. 3, 533–577.
R. Ji, C. Ogle, B. Ramsey, Relative amenability and relative soficity, (2018), arXiv:1807.07600.
I. J. Leary, A. Minasyan, Commensurating HNN-extensions: non-positive curvature and biautomaticity, (2019), arXiv:1907.03515.
R. Lyons, M. Pichot, S. Vassout, Uniform non-amenability, cost, and the first l2-Betti number, Groups Geom. Dyn. 2 (2008), no. 4, 595-617.
A. Malyshev, Non-amenability of product replacement graphs, (2013), arXiv:1305.2408.
A. Malyshev, Combinatorics of finitely generated groups, (2014), PhD thesis, UCLA.
A. Malyshev, I. Pak, Growth in product replacement graphs of Grigorchuk groups, J. Group Theory 18 (2015), no. 2, 209–234.
A. Minasyan, D. Osin, Acylindrically hyperbolic groups with exotic properties, J. Algebra 522 (2019), 218–235.
P. Nowak, Isoperimetry of group actions, Adv. Math. 219 (2008), no. 1, 1-26.
A.Yu. Olshanskii, M.V. Sapir, On k-free-like groups, Algebra and Logic 48 (2) (2009), 245-257.
D. Osin, Uniform non-amenability of free Burnside groups, Arch. Math. (Basel) 88 (2007), no. 5, 403-412.
D. Osin, L2-Betti numbers and non-unitarizable groups without free subgroups, Int. Math. Res. Not. IMRN2009, no. 22, 4220-4231.
G. Pete, Probability and geometry on groups. Lecture notes for a graduate course, (2017), https://math.bme.hu/~gabor/PGG.pdf.
L. L. Pham, Uniform Kazhdan constants and paradoxes of the affine plane, Transformation Groups (2020).
M. Pichot, Semi-continuity of the first l2-Betti number on the space of finitely generated groups, Comment. Math. Helv. 81 (2006), no. 3, 643-652.
Y. Stalder, Convergence of Baumslag-Solitar groups, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 221-233.
R. Willett, Property A and graphs with large girth, J. Topol. Anal. 3 (2011), no. 3, 377–384.

[24] G.N. Arzhantseva and P.-A. Cherix, On the Cayley graph of a generic finitely presented group,
Bulletin of the Belgian Mathematical Society, 11 (2004), no. 4, 589-601.   pdf
18 citations by


T. G. Ceccherini-Silberstein, A. Y. Samet-Vaillant, Asymptotic invariants of finitely generated algebras. A generalization of Gromov's quasi-isometric viewpoint, Journal of Mathematical Sciences, 156 (1) (2009), 56-108.
P. Dani, I. Levcovitz, Subgroups of right-angled Coxeter groups via Stallings-like techniques, (2019), arXiv:1908.09046.
B. Federici, Interactions between large-scale invariants ininfinite graphs, PhD thesis, 2017, University of Warwick.
E. Frenkel, A. Myasnikov, V. Remeslennikov, Amalgamated products of groups II: measures of random normal forms, Journal of Mathematical Sciences volume 185 (2012), 300–320.
A. Georgakopoulos, On planar Cayley graphs and Kleinian groups Trans. Amer. Math. Soc. 373 (2020), no. 7, 4649–4684.
A. Georgakopoulos, M. Hamann, The planar Cayley graphs are effectively enumerable I: Consistently planar graphs, Combinatorica 39 (2019), no. 5, 993–1019.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in free groups, Groups Complex. Cryptol. 3 (2011), no. 2, 257–284.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent groups, J. Algebra 352 (2012), 192–214.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
Y. Kemper, Problems of enumeration and realizability on matroids, simplicial complexes, and graphs, (2013), PhD thesis, U Calirfornia Davis.
A. Khukhro, A characterisation of virtually free groups via minor exclusion, (2020), arXiv:2006.16918.
J. de Loera, Y. Kemper, Polyhedral embeddings of Cayley graphs, Electronic Notes in Discrete Mathematics 43 (2013), 279-288.
A. Myasnikov, V. Remeslennikov, E. Frenkel′, Free products of groups with amalgamation: stratification of sets of normal forms and estimates, (Russian) ; translated from Fundam. Prikl. Mat. 16 (2010), no. 8, 189-221 J. Math. Sci. (N.Y.) 185 (2012), no. 2, 300–320.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
Y. Ollivier, Le Hasard et la Courbur, Habilitation thesis, 2009, École normale supérieure de Lyon.
Y. Ollivier, Sharp phase transition theorems for hyperbolicity, Geom. Funct. Anal. 14 (2004), no. 3, 595—679.
M. Ostrovskii, D. Rosenthal, Metric dimensions of minor excluded graphs and minor exclusion in groups, Internat. J. Algebra Comput. 25 (2015), no. 4, 541–554.
O. Varghese, Planarity of Cayley graphs of graph products of groups, Discrete Math. 342 (2019), no. 6, 1812–1819.

[23] G.N. Arzhantseva and I.G. Lysenok, Growth tightness for word hyperbolic groups,
Mathematische Zeitschrift, 241 (2002), no. 3, 597-611.   pdf
35 citations by


L. Bartholdi, R. Grigorchuk, V. Nekrashevych, From fractal groups to fractal sets, Fractals in Graz 2001, 25-118,Trends Math., Birkhäuser, Basel, 2003.
Ch. Cashen, J. Tao, Growth tight actions of product groups, Groups Geom. Dyn. 10 (2016), no. 2, 753–770.
S. Cantrell, R. Tanaka, The Manhattan curve, ergodic theory of topological flows and rigidity, (2021), arXiv:2104.13451.
T. Ceccherini-Silberstein, F. Scarabotti, Random walks, entropy and hopfianity of free groups, Random walks and geometry, 413-419, Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
T. Ceccherini-Silberstein, W. Woess, Growth and ergodicity of context-free languages, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4597-4625.
V. Chaynikov, Actions of maximal growth of hyperbolic groups, (2012), arXiv:1201.1349.
R. Coulon, Growth of periodic quotients of hyperbolic groups, Algebr. Geom. Topol. 13 (2013), no. 6, 3111–3133.
F. Dal’bo, M. Peigné, J.-C. Picaud, A. Sambusetti, On the growth of quotients of Kleinian groups, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 835–851.
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505–530.
A. Erschler, Growth rates of small cancellation groups, Random walks and geometry,421-430, Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
K. Fujiwara, Z. Sela, The rates of growth in a hyperbolic group, (2020), arXiv:2002.10278.
I. Gekhtman, S. J. Taylor, G. Tiozzo, Counting problems in graph products and relatively hyperbolic groups, Israel J. Math. 237 (2020), no. 1, 311–371.
I. Gekhtman, S. J. Taylor, G. Tiozzo, Central limit theorems for counting measures in coarse negative curvature, (2020), arXiv:2004.13084.
S. Gouezel , F. Matheus, F. Maucourant, Entropy and drift in word hyperbolic groups, Invent. Math. 211 (2018), no. 3, 1201–1255.
P. de la Harpe, Uniform growth in groups of exponential growth, Geom. Dedicata 95 (2002), 1-17.
P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. vi+310 pp.
Z. He, J. Liu, W. Yang, Large quotients of group actions with a contracting element, (2020), arXiv:2007.15825.
W. Huss, E. Sava, W. Woess, Entropy sensitivity of languages defined by infinite automata, via Markov chains with forbidden transitions, Theoret. Comput. Sci. 411 (2010), no. 44-46, 3917–3922.
J. Jaerisch, K. Matsuzaki, Growth and cogrowth of normal subgroups of a free group, Proc. Amer. Math. Soc. 145 (2017), no. 10, 4141–4149.
K. Matsuzaki, Growth and cogrowth tightnessof Kleinian and hyperbolic groups, RIMS Kôkyûroku Bessatsu B66 (2017), 021-036.
B. Mramor, Minimisers of the Allen-Cahn equation and the asymptotic Plateau problem on hyperbolic groups, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 3, 687–711.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
Y. Ollivier, Growth exponent of generic groups, Comment. Math. Helv. 81 (2006), no. 3, 569-593.
S. Sabourau, Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces, J. Mod. Dyn. 7 (2013), no. 2, 269–290.
A. Sambusetti, Asymptotic properties of coverings in negative curvature, Geom. Topol. 12 (2008), no. 1, 617-637.
A. Sambusetti, Growth tightness of negatively curved manifolds, C. R. Math. Acad. Sci. Paris 336 (2003), no. 6, 487-491.
A. Sambusetti, Growth tightness of surface groups, Expo. Math. 20 (2002), no. 4, 345-363.
A. Sambusetti, Growth tightness in group theory and Riemannian geometry, in "Recent Advances in Geometry and Topology,'' Cluj Univ. Press, Cluj-Napoca, (2004), 341-352.
E. Sava, Lamplighter random walks and entropy-sensetivity of languages, PhD thesis, 2010, TU Graz.
A. Talambutsa, Attainability of the index of exponential growth in free products of cyclic groups, Math. Notes 78 (2005), no. 3-4, 569-572.
W. Yang, Growth tightness for groups with contracting elements, Math. Proc. Cambridge Philos. Soc. 157 (2014), no. 2, 297–319.
W. Yang, Patterson-Sullivan measures and growth of relatively hyperbolic groups, Peking Mathematical Journal (2021).
W. Yang, Growth tightness of groups with nontrivial Floyd boundary, (2013), arXiv:1301.5623v1.
W. Yang, Statistically convex-cocompact actions of groups with contracting elements, (2016), Int. Math. Res. Not. IMRN 2019, no. 23, 7259–7323.
W. Yang, Purely exponential growth of cusp-uniform actions, Ergodic Theory Dynam. Systems 39 (2019), no. 3, 795–831.

[22] G.N. Arzhantseva and D.V. Osin, Solvable groups with polynomial Dehn functions,
Transactions of the American Mathematical Society, 354 (2002), 3329-3348.   pdf
17 citations by


M. Anshel, D. Kahrobaei, Decision and search in non-abelian Cramer Shoup public key cryptosystem, (2013), arXiv:1309.4519.
N. Brady, W. Dison, T. Riley, Hyperbolic hydra, Groups Geom. Dyn. 7 (2013), no. 4, 961–976.
N. Broaddus, B. Farb, A. Putman, Irreducible Sp-representations and subgroup distortion in the mapping class group, Comment. Math. Helv. 86 (2011), no. 3, 537–556.
M. Cavaleri, Computability of Folner sets, (2016), Internat. J. Algebra Comput. 27 (2017), no. 7, 819–830.
S. Cleary, C. Martínez-Pérez, Undistorted embeddings of metabelian groups of finite Prüfer rank, New York J. Math. 21 (2015), 1027–1053.
Y. de Cornulier, Aspects de la géométrie des groupes, Habilitation thesis, (2014), University of Paris-Sud 11.
Y. de Cornulier, R. Tessera, Metabelian groups with quadratic Dehn function and Baumslag-Solitar groups, Confluentes Math. 2 (2010), no. 4, 431–443.
P. Davidson, Geometric methods in the study of Pride groups and relative presentations, (2008), PhD thesis, University of Glasgow. http://theses.gla.ac.uk/230/01/2008davidsonphd.pdf.
W. Dison, T.R. Riley, Hydra groups, Comment. Math. Helv. 88 (2013), no. 3, 507–540.
C. Drutu, Filling in solvable groups and in lattices in semisimple groups, Topology 43 (2004), no. 5, 983-1033.
R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional graph manifolds, Astérisque No. 372 (2015), xxi+177 pp.
R. Ji, C. Ogle, B. Ramsey, B-bounded cohomology and applications.,Internat. J. Algebra Comput. 23 (2013), no. 1, 147–204.
D. Kahrobaei, M. Anshel, Decision and search in non-abelian Cramer-Shoup public key cryptosystem, Groups Complex. Cryptol. 1 (2009), no. 2, 217–225.
M. Kassabov, T. Riley, The Dehn function of Baumslag's metabelian group, Geom. Dedicata 158 (2012), 109–119.
E. Leuzinger, Ch. Pittet, On quadratic Dehn functions, Math. Z. 248 (2004), no. 4, 725-755.
R. Tessera, The large-scale geometry of locally compact solvable groups, Internat. J. Algebra Comput. 26 (2016), no. 2, 249–281.
W. Wang, Dehn functions of finitely presented metabelian groups, J. Group Theory, in press.

[21] G.N. Arzhantseva, On quasiconvex subgroups of word hyperbolic groups,
Geometriae Dedicata, 87 (2001), 191-208.   pdf
30 citations by


C. Abbot, M. Hull, Random walks and quasi-convexity in acylindrically hyperbolic groups, (2020), arXiv:1909.10876.
V. Chaynikov, Actions of maximal growth of hyperbolic groups, (2012), arXiv:1201.1349.
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505–530.
T. Delzant, M. Gromov, Cuts in Kähler groups, infinite groups: geometric, combinatorial and dynamical aspects, 31-55, Progr. Math., 248, Birkhäuser, Basel, 2005.
F. Dudkin, K. Sviridov, Complementing a subgroup of a hyperbolic group by a free factor, (Russian) ; translated from Algebra Logika 52 (2013), no. 3, 332-351, 395, 398 Algebra Logic 52 (2013), no. 3, 222–235.
B. Farb, L. Mosher, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002), 91-152 (electronic).
S. Friedl, D. Silver, S. Williams, Splittings of knot groups, Math. Ann. 362 (2015), no. 1-2, 401–424.
A. Genevois, Cubical-like geometry of quasi-median graphs and applications to geometric group theory, (2017), arXiv:1712.01618.
R. Gitik, On intersection of conjugate subgoups, Internat. J. Algebra Comput. 27 (2017), no. 4, 403–419.
Y. Glasner, J. Souto, P. Storm, Normal complements to hyperbolic subgroup, (2009), preprint. https://www.math.bgu.ac.il/~yairgl/Hyp_qc.pdf.
P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. vi+310 pp.
S. Hersonsky, F. Paulin, On the almost sure spiraling of geodesics in negatively curved manifolds, J. Differential Geom. 85 (2010), no. 2, 271–314.
E. Jabara, Groups that are the union of a finite number of double cosets, Rend. Sem. Mat. Univ. Padova 116 (2006), 41-53.
I. Kapovich, R. Weidmann, Kleinian groups and the rank problem, Geom. Topol. 9 (2005), 375-402.
I. Kapovich, The Frattini subgroups of subgroups of hyperbolic groups, J. Group Theory 6 (2003), no. 1, 115-126.
I. Kapovich, The non-amenability of Schreier graphs for infinite index quasiconvex subgroups of hyperbolic groups, Enseign. Math. (2) 48 (2002), no. 3-4, 359-375.
I. Kapovich, The geometry of relative Cayley graphs for subgroups of hyperbolic groups, (2002), arXiv:math/0201045.
A. Kar, M. Sageev, Ping pong on CAT(0) cube complexes, Comment. Math. Helv. 91 (2016), no. 3, 543–561.
O. Kharlampovich, A. Vdovina, Linear estimates for solutions of quadratic equations in free groups, Internat. J. Algebra Comput. 22 (2012), no. 1, 1250004, 16 pp.
O. Kharlampovich, A. Mohajeri, A. Taam, A. Vdovina, Quadratic Equations in hyperbolic groups are NP-complete, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6207–6238.
E. Martínez-Pedroza, Combination of quasiconvex subgroups of relatively hyperbolic groups, Groups Geom. Dyn. 3 (2009), no. 2, 317-342.
A. Minasyan, Some properties of subsets of hyperbolic groups, Comm. Algebra 33 (2005), no. 3, 909-935.
A. Minasyan, On products of quasiconvex subgroups in hyperbolic groups, Internat. J. Algebra Comput. 14 (2004), no. 2, 173-195.
A. Minasyan, On quasiconvex subsets of hyperbolic groups, (2005), PhD thesis, Vanderbilt University.
M. Ostrovskii, Metric characterizations of superreflexivity in terms of word hyperbolic groups and finite graphs, Anal. Geom. Metr. Spaces 2 (2014), no. 1, 154–168.
J. Russell, D. Spriano, H.C. Tran, Convexity in hierarchically hyperbolic spaces, (2018), arXiv:1809.09303.
J. Russell, D. Spriano, H.C. Tran, The local-to-global property for Morse quasi-geodesics, (2019), arXiv:1908.11292.
A. Vonseel, Hyperbolicité et bouts des graphes de Schreier, PhD thesis, 2017, Université de Strasbourg.
D. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, 117. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012. xiv+141 pp.
D. Wise, The structure of groups with a quasiconvex hierarchy, Annals of Mathematics Studies 209, Princeton University Press, Princeton, 2021, 376pp.

[20] G.N. Arzhantseva, A property of subgroups of infinite index in a free group,
Proceedings of the American Mathematical Society, 128 (11) (2000), 3205-3210.   pdf
31 citations by


F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, Statistical properties of subgroups of free groups, Random Structures Algorithms 42 (2013), no. 3, 349–373.
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, On two distributions of subgroups of free groups, Proceedings of the Seventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO), 82–89, SIAM, Philadelphia, PA, 2010.
F. Bassino, A. Martino, C. Nicaud, P. Weil, Random presentations and random subgroups: a survey, (2017), arXiv:1702.01942.
F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev, I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, Complexity and Randomness in Group Theory: GAGTA book 1, De Gruyter, 2020, xii+374 pp.
H. Bigdely, A non-quasiconvex embedding of relatively hyperbolic groups, (2012), arXiv:1211.2730.
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Generic complexity of the conjugacy problem in HNN-extensions and algorithmic stratification of Miller's groups, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 963-997.
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Multiplicative measures on free groups, Internat. J. Algebra Comput. 13 (2003), no. 6, 705-731.
A. Borovik, A.G. Myasnikov, V. Shpilrain, Measuring sets in infinite groups, Computational and statistical group theory, (Las Vegas, NV/Hoboken, NJ, 2001), 21-42, Contemp. Math., 298, Amer. Math. Soc., Providence, RI, 2002.
L. Ciobanu, A. Martino, E. Ventura, The generic Hanna Neumann conjecture and post correspondence problem, (2008), preprint.
P. Dani, I. Levcovitz, Subgroups of right-angled Coxeter groups via Stallings-like techniques, (2019), arXiv:1908.09046.
J. Delgado Rodríguez, Extensions of free groups: algebraic, geometric, and algorithmic aspects, PhD thesis, 2017, Universitat Politècnica Catalunya.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent groups, J. Algebra 352 (2012), 192–214.
J. Friedman, Sheaves on graphs, their homological invariants, and a proof of the Hanna Neumann conjecture: with an appendix by Warren Dicks, Mem. Amer. Math. Soc. 233 (2015), no. 1100, xii+106 pp.
J. Friedman, The strengthened Hanna Neumann conjecture I: A combinatorial proof, (2010), arXiv:1003.5739v3.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case complexity and decision problems in group theory, Adv. Math. 190 (2005), no. 2, 343-359.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks, J. Algebra 264 (2003), no. 2, 665-694.
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113-140.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4, 911-933.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion, Proc. London Math. Soc. (3) 88 (2004), no. 1, 89-113.
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex subgroups, J. Algebra 488 (2017), 442–483.
O. Kharlampovich, P. Weil, On the generalized membership problem in relatively hyperbolic groups, Fields of logic and computation. III, 147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.
S. Margolis, J. Meakin, Z. Sunik, Distortion functions and the membership problem for submonoids of groups and monoids, Geometric methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
M. Shusterman, P. Zalesskii, Virtual retraction and Howson's theorem in pro-p groups Trans. Amer. Math. Soc. 373 (2020), no. 3, 1501–1527.
B. Solie, Genericity of filling elements, Internat. J. Algebra Comput. 22 (2012), no. 2, 1250008, 10 pp.
B. Steinberg, On a conjecture of Karrass and Solitar, J. Group Theory 17 (2014), no. 3, 433–444.

[19] G.N. Arzhantseva, Generic properties of finitely presented groups and Howson's Theorem,
Communications in Algebra, 26 (11) (1998), 3783-3792.
31 citations by


F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, Statistical properties of subgroups of free groups, Random Structures Algorithms 42 (2013), no. 3, 349–373.
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, On two distributions of subgroups of free groups, Proceedings of the Seventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO), 82–89, SIAM, Philadelphia, PA, 2010.
F. Bassino, A. Martino, C. Nicaud, P. Weil, Random presentations and random subgroups: a survey, (2017), arXiv:1702.01942.
F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev, I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, Complexity and randomness in group theory: GAGTA book 1, De Gruyter, 2020, xii+374 pp. H. Bigdely, A non-quasiconvex embedding of relatively hyperbolic groups, (2012), arXiv:1211.2730.
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Generic complexity of the conjugacy problem in HNN-extensions and algorithmic stratification of Miller's groups, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 963-997.
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Multiplicative measures on free groups, Internat. J. Algebra Comput. 13 (2003), no. 6, 705-731.
A. Borovik, A.G. Myasnikov, V. Shpilrain, Measuring sets in infinite groups, Computational and statistical group theory, (Las Vegas, NV/Hoboken, NJ, 2001), 21-42, Contemp. Math., 298, Amer. Math. Soc., Providence, RI, 2002.
L. Ciobanu, A. Martino, E. Ventura, The generic Hanna Neumann conjecture and post correspondence problem, (2008), preprint.
P. Dani, I. Levcovitz, Subgroups of right-angled Coxeter groups via Stallings-like techniques, (2019), arXiv:1908.09046.
J. Delgado Rodríguez, Extensions of free groups: algebraic, geometric, and algorithmic aspects, PhD thesis, 2017, Universitat Politècnica Catalunya.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent groups, J. Algebra 352 (2012), 192–214.
J. Friedman, Sheaves on graphs, their homological invariants, and a proof of the Hanna Neumann conjecture: with an appendix by Warren Dicks, Mem. Amer. Math. Soc. 233 (2015), no. 1100, xii+106 pp.
J. Friedman, The strengthened Hanna Neumann conjecture I: A combinatorial proof, (2010), arXiv:1003.5739v3.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case complexity and decision problems in group theory, Adv. Math. 190 (2005), no. 2, 343-359.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks, J. Algebra 264 (2003), no. 2, 665-694.
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113-140.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4, 911-933.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion, Proc. London Math. Soc. (3) 88 (2004), no. 1, 89-113.
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex subgroups, J. Algebra 488 (2017), 442–483.
O. Kharlampovich, P. Weil, On the generalized membership problem in relatively hyperbolic groups, Fields of logic and computation. III, 147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.
S. Margolis, J. Meakin, Z. Sunik, Distortion functions and the membership problem for submonoids of groups and monoids, Geometric methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
M. Shusterman, P. Zalesskii, Virtual retraction and Howson's theorem in pro-p groups Trans. Amer. Math. Soc. 373 (2020), no. 3, 1501–1527.
B. Solie, Genericity of filling elements, Internat. J. Algebra Comput. 22 (2012), no. 2, 1250008, 10 pp.
B. Steinberg, On a conjecture of Karrass and Solitar, J. Group Theory 17 (2014), no. 3, 433–444.

[18] G.N. Arzhantseva, On the groups all of whose subgroups with fixed number of generators are free,
Fundamental and Applied Mathematics, 3(3) (1997), 675-683 (in Russian).   pdf
19 citations by


Yu. Bahturin, A. Olshanskii, Actions of maximal growth, Proc. London Math. Soc. (2010) 101(1): 27-72.
I. Bumagin, On small cancellation k-generated groups with (k-1)-generated subgroups all free, Internat. J. Algebra Comput. 11 (2001), no. 5, 507-524.
S. Cleary, M. Elder, A. Rechnitzer, J. Taback, Random subgroups of Thompson's group F, Groups Geom. Dyn. 4 (2010), no. 1, 91–126.
E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, Regular sets and counting in free groups, (2009), arXiv:0906.2850.
R. Gilman, A. Miasnikov, D. Osin, Exponentially generic subsets of groups, Illinois J. Math. 54 (2010), no. 1, 371–388.
E. Ghys, Random groups (following Misha Gromov, ...), Astérisque No. 294 (2004), viii, 173-204.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case complexity and decision problems in group theory, Adv. Math. 190 (2005), no. 2, 343-359.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks, J. Algebra 264 (2003), no. 2, 665-694.
I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, Densities in free groups and Zk, visible points and test elements, Math. Res. Lett. 14 (2007), no. 2, 263-284.
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4, 911-933.
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion, Proc. London Math. Soc. (3) 88 (2004), no. 1, 89-113.
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113-140.
I. Kapovich, R. Weidmann, Nielsen equivalence in a class of random groups, J. Topol. 9 (2016), no. 2, 502–534.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.

[17] G.N. Arzhantseva and A.Yu. Ol'shanskii, Generality of the class of groups in which subgroups with a lesser number of generators are free,
Mathematical Notes, 59(3-4) (1996), 350-355.   pdf
69 citations by


Y. Antolín, L. Ciobanu, N. Viles, On the asymptotics of visible elements and homogeneous equations in surface groups, Groups Geom. Dyn. 6 (2012), no. 4, 619–638.
I. Babenko, S. Sabourau, Minimal volume entropy of simplicial complexes, (2020), arXiv:2002.11069.
T. Bandman, Sh. Garion, B. Kunyavskiĭ, Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics, Cent. Eur. J. Math. 12 (2014), no. 2, 175–211.
T. Bandman, B. Kunyavskiĭ, Criteria for equidistribution of solutions of word equations on SL(2, J. Algebra 382 (2013), 282–302.
F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev, I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, Complexity and randomness in group theory: GAGTA book 1, De Gruyter, 2020, xii+374 pp.
F. Bassino, A. Martino, C. Nicaud, P. Weil, Random presentations and random subgroups: a survey, (2017), arXiv:1702.01942.
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, Statistical properties of subgroups of free groups, Random Structures Algorithms 42 (2013), no. 3, 349–373.
F. Bassino, C. Nicaud, P. Weil, On the genericity of Whitehead minimality, J. Group Theory 19 (2016), no. 1, 137–159.
F. Bassino, C. Nicaud, P. Weil, Generic properties of subgroups of free groups and finite presentations, Algebra and Computer Science, 677, American Mathematical Society, pp.1-44, 2016. Contemporary Mathematics.
F. Bassino, C. Nicaud, P. Weil, Silhouettes and generic properties of subgroups of the modular group, (2020), arXiv:2011.09179.
G. Bergman, On monoids, 2-firs, and semifirs, Semigroup Forum 89 (2014), no. 2, 293–335.
A. Bishop, M. Ferov, Density of metric small cancellation in finitely presented groups, J. Groups Complex. Cryptol. 12 (2020), no. 2, Paper No. 1, 18 pp.
R. Brown, J. Nan, Stabilizers of fixed point classes and Nielsen numbers of n-valued maps, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 4, 523–535.
I. Bumagin, On small cancellation k-generated groups with (k-1)-generated subgroups all free, Internat. J. Algebra Comput. 11 (2001), no. 5, 507-524.
A. Carnevale, M. Cavaleri, Partial word and equality problems and Banach densities, Adv. Math. 368 (2020), 107133, 16 pp.
Ch. Cashen, J. Manning, Virtual geometricity is rare, LMS J. Comput. Math. 18 (2015), no. 1, 444–455.
M. Cavaleri, Følner functions and the generic word problem for finitely generated amenable groups, J. Algebra 511 (2018), 388–404.
T. Ceccherini-Silberstein, A. Samet-Vaillant, Asymptotic invariants of finitely generated algebras. A generalization of Gromov's quasi-isometric viewpoint, Functional analysis. J. Math. Sci. (N.Y.) 156 (2009), no. 1, 56–108.
S. Cleary, M. Elder, A. Rechnitzer, J. Taback, Random subgroups of Thompson's group F, Groups Geom. Dyn. 4 (2010), no. 1, 91–126.
P. Dani, I. Levcovitz, Subgroups of right-angled Coxeter groups via Stallings-like techniques, (2019), arXiv:1908.09046.
E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, Regular sets and counting in free groups, (2009), arXiv:0906.2850.
I. Gekhtman, S. Taylor, G. Tiozzo, Counting loxodromics for hyperbolic actions, J. Topol. 11 (2018), no. 2, 379–419.
I. Gekhtman, S. Taylor, G. Tiozzo, Counting problems in graph products and relatively hyperbolic groups, Israel J. Math. 237 (2020), no. 1, 311–371.
E. Ghys, Random groups (following Misha Gromov, ...), Astérisque No. 294 (2004), viii, 173-204.
R. Gilman, A. Miasnikov, D. Osin, Exponentially generic subsets of groups, Illinois J. Math. 54 (2010), no. 1, 371–388.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent groups, J. Algebra 352 (2012), 192–214.
N. Gupta, I. Kapovich, The primitivity index function for a free group, and untangling closed curves on hyperbolic surfaces. With an appendix by Khalid Bou-Rabee, Math. Proc. Cambridge Philos. Soc. 166 (2019), no. 1, 83–121.
L. Guyot, Estimating Minkowski dimensions in the space of marked groups, Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 1, 107-124.
P. de la Harpe, Uniform growth in groups of exponential growth, Geom. Dedicata 95 (2002), 1-17.
A. Juhász, A Freiheitssatz for Whitehead graphs of one-relator groups with small cancellation, Comm. Algebra 37 (2009), no. 8, 2714–2741.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46.
I. Kapovich, On mathematical contributions of Paul E. Schupp, Illinois J. Math. 54 (2010), no. 1, 1–9.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case complexity and decision problems in group theory, Adv. Math. 190 (2005), no. 2, 343-359.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks, J. Algebra 264 (2003), no. 2, 665-694.
I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, Densities in free groups and Zk, visible points and test elements, Math. Res. Lett. 14 (2007), no. 2, 263-284.
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4, 911-933.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion, Proc. London Math. Soc. (3) 88 (2004), no. 1, 89-113.
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113-140.
I. Kapovich, R. Weidmann, Kleinian groups and the rank problem, Geom. Topol. 9 (2005), 375-402.
I. Kapovich, R. Weidmann, Freely indecomposable groups acting on hyperbolic spaces, Internat, J. Algebra Comput. 14 (2004), no. 2, 115-171.
I. Kapovich, R. Weidmann, Nielsen equivalence in a class of random groups, J. Topol. 9 (2016), no. 2, 502–534.
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex subgroups, (2014), arXiv:1408.1917.
O. Kharlampovich, P. Weil, On the generalized membership problem in relatively hyperbolic groups, Fields of logic and computation. III, 147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.
S. Kim, Ch. Staecker, Dynamics of random selfmaps of surfaces with boundary, Discrete Contin. Dyn. Syst. 34 (2014), no. 2, 599–611.
I. Kozakov, Percolation and Ising model on graphs with tree-like structure, (2008), PhD thesis, Vanderbilt University.
Y. Liu, M. M. Wood, The free group on n generators modulo n+u random relations as n goes to infinity, J. Reine Angew. Math. 762 (2020), 123–166.
L. Louder, H. Wilton, Negative immersions for one-relator groups, (2018), arXiv:1803.02671.
J. Mackay, Conformal dimension and random groups, Geom. Funct. Anal. 22 (2012), no. 1, 213–239.
J. Maher, A. Sisto, Random subgroups of acylindrically hyperbolic groups and hyperbolic embeddings, Int. Math. Res. Not. IMRN 2019, no. 13, 3941–3980.
A. Mann, How groups grow, London Mathematical Society Lecture Note Series, 395. Cambridge University Press, Cambridge, 2012. x+199 pp.
S. Margolis, J. Meakin, Z. Sunik, Distortion functions and the membership problem for submonoids of groups and monoids, Geometric methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005.
L. Markus-Epstein, Stallings foldings and subgroups of amalgams of finite groups, Internat. J. Algebra Comput. 17 (2007), no. 8, 1493-1535.
A. Myasnikov, V. Shpilrain, A. Ushakov, Group-based cryptography, Birkhäuser, 2008.
Y. Ollivier, Sharp phase transition theorems for hyperbolicity, Geom. Funct. Anal. 14 (2004), no. 3, 595-679.
Y. Ollivier, Critical densities for random quotients of hyperbolic groups, C. R. Math. Acad. Sci. Paris 336 (2003), no. 5, 391-394.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
P. Schupp, Coxeter groups, 2-completion, perimeter reduction and subgroup separability, Geom. Dedicata 96 (2003), 179-198.
V. Shpilrain, Average-case complexity of the Whitehead problem for a free group, (2021), arXiv:2105.01366.
I. Snopce, S. Tanushevski, Asymptotic density of test elements in free groups and surface groups, Int. Math. Res. Not. IMRN 2017, no. 18, 5577–5590.
B. Solie, Genericity of filling elements, Internat. J. Algebra Comput. 22 (2012), no. 2, 1250008, 10 pp.
Ch. Staecker, Typical elements in free groups are in different doubly-twisted conjugacy classes, Topology Appl. 157 (2010), no. 10-11, 1736–1741.
M. Steenbock, Rips-Segev torsion-free groups without the unique product property, J. Algebra 438 (2015), 337–378.
R. Weidmann, On the rank of quotients of hyperbolic groups, J. Group Theory 16 (2013), no. 5, 651–665.
D. T. Wise, Sectional curvature, compact cores, and local quasiconvexity, Geom. Funct. Anal. 14 (2004), no. 2, 433-468.
D. T. Wise, An Invitation to Coherent Groups. What's Next?, edited by Dylan Thurston, Princeton: Princeton University Press, 2020, pp. 326-414.

[16] G.N. Arzhantseva, Generic properties of finitely presented groups,
PhD thesis, Moscow Lomonosov State University, December 1998.

Books (edited):

[15] G.N. Arzhantseva, A.Valette (eds.), Limits of graphs in group theory and computer science, ,
Fundamental Sciences, EPFL Press, Lausanne, 2009, 305 pp.     book

[14] G.N. Arzhantseva, L. Bartholdi, J. Burillo, and E. Ventura (eds.), Geometric group theory, ,
Fundamental Sciences, EPFL Press, Lausanne, 2009, 305 pp.    
book

Submitted papers and preprints:

[13] G.N. Arzhantseva, D. Kielak, T. de Laat, D. Sawicki, Origami expanders, arXiv:2112.11864.     pdf

[12] G.N. Arzhantseva, D. Osajda, Graphical small cancellation groups with the Haagerup property, (2014).   pdf
14 citations by

V. Alekseev, M. Finn-Sell, Sofic boundaries of groups and coarse geometry of sofic approximations, (2016), arXiv.org:1608.02242.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky conjecture, Operator algebras and their applications, 1-33, Contemp. Math., 671, Amer. Math. Soc., Providence, RI, 2016.
J. Deng, Q. Wang, G. Yu, The coarse Baum-Connes conjecture for certain extensions and relative expanders, (2021), arXiv:2102.10617.
M. Finn-Sell, Controlled analytic properties and the quantitive Baum-Connes Conjecture, (2019), arXiv:1908.02131.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, (2014), arXiv:1411.7367.
S. Knudby, On connected Lie groups and the approximation property (2016), arXiv:1603.05518.
M. Mimura, Amenability versus non-exactness of dense subgroups of a compact group. J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part I: Coarse embeddings of amenable groups, Journal of Topology and Analysis 13 (2021), no. 1, 1–47.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part II: Fibred coarse embeddings, Anal. Geom. Metr. Spaces 7 (2019), no. 1, 62-108.
D. Osajda, Small cancellation labellings of some infinite graphs and applications, (2014), arXiv.org:1406.5015.
N. Ozawa, Y. Suzuki, On characterizations of amenable C*-dynamical systems and new examples, (2020), arXiv:2011.03420.
D. Sawicki, Warped cones over profinite completions, J. Topol. Anal. 10 (2018), no. 3, 563-584.
D. Sawicki, J. Wu, Straightening warped cones, Journal of Topology and Analysis (2020), 1-25.
Q. Wang, Y. Zhang, The coarse Novikov conjecture for extensions of coarsely embeddable groups, (2021), arXiv:2105.04753.

[11] G.N. Arzhantseva, C. Drutu, Geometry of infinitely presented small cancellation groups, Rapid Decay and quasi-homomorphisms, (2014).   pdf
5 citations by


M. Brandenbursky, S. Gal, J. Kędra, M. Marcinkowski, The cancellation norm and the geometry of bi-invariant word metrics, Glasg. Math. J. 58 (2016), no. 1, 153–176.
I. Chatterji, Introduction to the rapid decay property, (2016), arXiv:1604.06387.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, (2014), arXiv:1408.4488
A. Martin, Complexes of groups and geometric small cancellation over graphs of groups, (2013), arXiv:1306.6847v2.
M. Sapir, The rapid decay property and centroids in groups, J. Topol. Anal. 7 (2015), no. 3, 513–541.

[10] G.N. Arzhantseva and T. Delzant, Examples of random groups, (2008).
first version (October 28, 2008), revised version (August 26, 2011).   pdf
74 citations by


A. Bartels, W. Lueck, The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. of Math. (2) 175 (2012), no. 2, 631–689.
M. Bestvina, V. Guirardel, C. Horbez, Boundary amenability of Out(FN) , (2017), arXiv:1705.07017.
P. Baum, Dirac operator and K-theory for discrete groups. A celebration of the mathematical legacy of Raoul Bott, 97–107, CRM Proc. Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky conjecture, Operator algebras and their applications, 1-33, Contemp. Math., 671, Amer. Math. Soc., Providence, RI, 2016.
P. Baum, E. Guentner, R. Willett, Expanders, exact crossed products, and the Baum-Connes conjecture, (2013), arXiv:1311.2343.
J. Brodzki, Ch. Cave, K. Li, Exactness of locally compact groups, Adv. Math. 312 (2017), 209–233.
M. Cordes, D. Hume, Stability and the Morse boundary, J. Lond. Math. Soc. (2) 95 (2017), no. 3, 963–988.
Y. de Cornulier, Y. Stalder, A. Valette, Proper actions of wreath products and generalizations, Trans. Amer. Math. Soc. 364 (2012), no. 6, 3159–3184.
R. Coulon, Asphericity and small cancellation theory for rotation families of groups, Groups Geom. Dyn. 5 (2011), no. 4, 729–765.
R. Coulon, Automorphismes extérieurs du groupe de Burnside libre, PhD thesis, University of Strasbourg, 2010.
R. Coulon, On the geometry of Burnside quotients of torsion free hyperbolic groups. Internat. J. Algebra Comput. 24 (2014), no. 3, 251–345.
R. Coulon, Théorie de la petite simplification: une approche géométrique [d'après F. Dahmani, V. Guirardel, D. Osin et S. Cantat, S. Lamy], (French) [Small cancellation theory: a geometric approach (after F. Dahmani, V. Guirardel, D. Osin, and S. Cantat, S. Lamy)] Astérisque No. 380, Séminaire Bourbaki. Vol. 2014/2015 (2016), Exp. No. 1089, 1–33.
R. Coulon, D. Gruber, Small cancellation theory over Burnside groups, (2017), arXiv:1705.09651.
R. Coulon, M. Hull, C. Kent, A Cartan-Hadamard type result for relatively hyperbolic groups, Geom. Dedicata 180 (2016), 339–371.
F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
T. Delabie, A. Khukhro, Box spaces of the free group that neither contain expanders nor embed into a Hilbert space. Advances in Mathematics 336 (2018), 70-96.
T. Delabie, M. Tointon, The asymptotic dimension of box spaces of virtually nilpotent groups, Discrete Math. 341 (2018), no. 4, 1036–1040.
T. Deprez, Ozawa's class S for locally compact groups and unique prime factorization, (2019), arXiv:1904.02090.
A. Dranishnikov, M. Zarichnyi, Asymptotic dimension, decomposition complexity, and Haver's property C, Topology Appl. 169 (2014), 99–107.
C. Druţu, M. Kapovich, Geometric group theory, With an appendix by Bogdan Nica. American Mathematical Society Colloquium Publications, 63. American Mathematical Society, Providence, RI, 2018. xx+819 pp.
A. Eskenazis, Geometric inequalities and advances in the Ribe program, PhD thesis, 2019, Princeton University.
A. Eskenazis, M. Mendel, A. Naor, Nonpositive curvature is not coarsely universal, Invent. Math. 217 (2019), no. 3, 833-886.
M. Finn-Sell, Almost quasi-isometries and more non-C*-exact groups, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393–403.
M. Finn-Sell, Controlled analytic properties and the quantitive Baum-Connes Conjecture, (2019), arXiv:1908.02131.
M. Finn-Sell, On the Baum-Connes conjecture for Gromov monster groups, (2014), arXiv:1401.6841.
M. Gerasimova, D. Gruber, N. Monod, A. Thom, Asymptotics of Cheeger constants and unitarisability of groups, (2018), arXiv:1801.09600.
M. P. Gomez Aparicio, P. Julg, A. Valette, The Baum–Connes conjecture: an extended survey, In Advances in Noncommutative Geometry (pp. 127-244), 2019, Springer, Cham.
D. Gruber, Infinitely presented C(6)-groups are SQ-universal, J. Lond. Math. Soc. (2) 92 (2015), no. 1, 178–201.
D. Gruber, Groups with graphical C(6) and C(7) small cancellation presentations, Trans. Amer. Math. Soc. 367 (2015), no. 3, 2051–2078.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic , Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2501–2552.
D. Gruber, A. Sisto, Divergence and quasi-isometry classes of random Gromov's monsters, (2018), arXiv:1805.04039.
D. Gruber, A. Sisto, R. Tessera, Random Gromov's monsters do not act non-elementarily on hyperbolic spaces, Proc. Amer. Math. Soc. 148 (2020), no. 7, 2773–2782.
E. Guentner, R. Tessera, G. Yu, A notion of geometric complexity and its application to topological rigidity, arxiv:1008.0884v1.
E. Guentner, R. Tessera, G. Yu, Discrete groups with finite decomposition complexity, Groups Geom. Dyn. 7 (2013), no. 2, 377–402.
V. Guirardel, Geometric small cancellation, Geometric group theory, 55–90, IAS/Park City Math. Ser., 21, Amer. Math. Soc., Providence, RI, 2014.
S. Han, Relative hyperbolicity of graphical small cancellation groups , (2020), arXiv:2010.13528.
D. Hume, Direct embeddings of relatively hyperbolic groups with optimal ℓp compression exponent, J. Reine Angew. Math. 703 (2015), 147–172.
D. Hume, Separation profiles, coarse embeddability and inner expansion, (2014), arXiv:arXiv:1410.0246v1.
C. Horbez, J. Huang, Boundary amenability and measure equivalence rigidity among two-dimensional Artin groups of hyperbolic type, (2020), arXiv:2004.09325.
H. Izeki, T. Kondo, Sh. Nayatani, N-step energy of maps and the fixed-point property of random groups, Groups Geom. Dyn. 6 (2012), no. 4, 701–736.
R. Kasilingam, Topological rigidity problems, (2015), arXiv:1510.04139.
A. Khukhro, Espaces et groupes non exacts admettant un plongement grossier dans un espace de Hilbert, Séminaire Bourbaki 71e année, 2018-2019, no. 1154.
M. Kotowski, Gromov's random group, (2013), notes, https://www.mimuw.edu.pl/~mk249019/notes-01-03-2013.pdf.
V. Lafforgue, Conjecture de Baum-Connes, théorie de Fonataine en caractéristique p, et programme de Langlands géométriques, (2009), Habilitation thesis, University of Paris 7.
W. Lueck, Survey on aspherical manifolds, European Congress of Mathematics, 53–82, Eur. Math. Soc., Zürich, 2010.
W. Lueck, Aspherical manifolds, Bulletin of the Manifold Atlas 2012, 1-17.
W. Lueck, Some open problems about aspherical closed manifolds, (2014) In: Ancona V., Strickland E. (eds) Trends in Contemporary Mathematics. Springer INdAM Series, vol 8. Springer, Cham.
W. Lueck, K- and L-theory of group rings, (2010), arXiv:1003.5002v1.
W. Lueck, Isomorphism conjectures in K- and L-theory, 2021, http://www.him.uni-bonn.de/lueck/data/ic.pdf.
M. Mimura, Amenability versus non-exactness of dense subgroups of a compact group. J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part I: Coarse embeddings of amenable groups, Journal of Topology and Analysis 13 (2021), no. 1, 1–47.
A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compos. Math. 147 (2011), no. 5, 1546–1572.
S. Nayatani, Fixed‐point property for affine actions on a Hilbert space, RIMS Kôkyûroku Bessatsu B66 (2017), 115−131.
P. Nowak, G. Yu, Large-Scale geometry, (2010), EMS publishing house, to appear. http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf.
P. Nowak, Group actions on Banach spaces, Handbook of group actions. Vol. II, 121–149, Adv. Lect. Math. (ALM), 32, Int. Press, Somerville, MA, 2015.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos [Mathematical Surveys], 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
D. Osajda, Small cancellation labellings of some infinite graphs and applications, Acta Math. 225 (2020), no. 1, 159-191.
G. Pisier, Interpolation and Fatou-Zygmund property for completely Sidon subsets of discrete groups (New title: Completely Sidon sets in discrete groups), (2017), arXiv:1706.03844.
G. Pisier, Tensor products of C*-algebras and operator spaces, London Mathematical Society student texts 96, Cambridge, New York, Cambridge University Press, 2020, x+484 pp.
M. Puschnigg, The Baum-Connes conjecture with coefficients for word-hyperbolic groups, (after Vincent Lafforgue). Astérisque No. 361 (2014), Exp. No. 1062, vii, 115–148.
M. Sapir, A Higman embedding preserving asphericity, J. Amer. Math. Soc. 27 (2014), no. 1, 1–42.
M. Sapir, Aspherical groups and manifolds with extreme properties, (2011), arXiv:1103.3873v3.
M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
D. Sawicki, J. Wu, Straightening warped cones, (2017), arXiv:1705.06725.
J. Špakula, R. Willett, On rigidity of Roe algebras, Adv. Math. 249 (2013), 289–310.
F. Vigolo, Geometry of actions, expanders and warped cones, PhD thesis, 2018, University of Oxford.
Sh. Weinberger, G. Yu, Finite part of operator K-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds, Geom. Topol. 19 (2015), no. 5, 2767–2799.
S. White, R. Willett, Cartan subalgebras in uniform Roe algebras, Groups Geom. Dyn. 14 (2020), no. 3, 949–989.
R. Willett, G. Yu, Higher index theory for certain expanders and Gromov monster groups II, Adv. Math. 229 (2012), no. 3, 1762–1803.
R. Willett, G. Yu, Higher index theory for certain expanders and Gromov monster groups I, Adv. Math. 229 (2012), no. 3, 1380–1416.
R. Willett, G. Yu, Higher index theory, (2019), https://math.hawaii.edu/~rufus/Skeleton.pdf.
R. Willett, Property A and graphs with large girth, J. Topol. Anal. 3 (2011), no. 3, 377–384.
Z. Xie, G. Yu, Higher invariants in noncommutative geometry, In: Chamseddine A., Consani C., Higson N., Khalkhali M., Moscovici H., Yu G. (eds) Advances in Noncommutative Geometry, 2019, Springer, Cham.
G. Yu, The Novikov conjecture, Russ. Math. Surv 74 (2019), no. 3, 525–541.

[9] G.N. Arzhantseva, P.-A. Cherix, Quantifying metric approximations of discrete groups,
preprint, University of Geneva, (2008), revised version (2020), submitted.   pdf
4 citations by


H. Bradford, Quantifying local embeddings into finite groups, (2021), arXiv:2104.07111.
H. Bradford, D. Dona, Topological full groups of minimal subshifts and quantifying local embeddings into finite groups, (2021), arXiv:2106.09145.
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups , (2021), arXiv:2105.00516.
A. Ivanov, Sofic profiles of S(ω) and computability, Arch. Math. Logic 60 (2021), no. 3-4, 477–494.

[8] G.N. Arzhantseva, An algorithm detecting Dehn presentations,
preprint, University of Geneva, (2000).   pdf
3 citations by


A. Darbinyan, The word and conjugacy problems in lacunary hyperbolic groups, (2017), arXiv:1708.04591.
V. Diekert, A. Duncan, A. Myasnikov, Geodesic rewriting systems and pregroups, (2009), arXiv.org:0906.2223.
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex subgroups (2014), arXiv:1408.1917.

Papers in Theoretical Computer Science/Applied mathematics (refereed):

[7] G.N. Arzhantseva, J. Díaz, J. Petit, J.D.P. Rolim, and M. Serna, Broadcasting on networks of sensors communicating through directional antennas,
Ambient Intelligence Computing, 1-12, Proceedings, CTI Press and Ellinika Grammata, 2003.   pdf

[6] G.N. Arzhantseva and J.D.P. Rolim, Considerations for a geometric model of the web,
Approximation and Randomization Algorithms in Communication Networks, Rome, 2002, 1-11, Proceedings, Carleton Scientific.

[5] G.N. Arzhantseva and J.D.P. Rolim, Computability and Complexity,
e-learning theoretical course of the Virtual Logic Laboratory (a project of the Swiss Virtual Campus), 90 pp. (electronic tutorial)

Short communications:

[4] G. Arzhantseva, A. Thom, A. Valette, Finite-dimensional approximations of discrete groups,,
Oberwolfach Rep., 8(2) (2011), 1429-1467.     pdf

[3] G. Arzhantseva, Uniform embeddings of groups into a Hilbert space,,
in I. Hambleton, E. Pedersen, A. Ranicki, H. Reich (eds.), Manifold perspectives, Oberwolfach Rep. 6(2) (2009), 1527-1529.     pdf

[2] G. Arzhantseva, The uniform Kazhdan property for SLn(Z), n>3,,
l'Enseignement Mathématique 54(2) (2008), 12.

[1] G. Arzhantseva, The entropy of a group endomorphismce,,
in G. Knieper, L. Polterovich, L. Potyagailo (eds.), Geometric group theory, hyperbolic dynamics and symplectic geometry, embeddings of groups into a Hilbert space, Oberwolfach Rep. 33 (2006), 2044-2045.     book

Lecture notes:

G.N. Arzhantseva and M. Lustig, A first course in geometric group theory, graduate textbook project.
G.N. Arzhantseva, Geometry of small cancellation and Burnside factors, lecture notes of the Borel seminar minicourse.
G.N. Arzhantseva, Infinite groups: Growth and Isoperimetry, lecture notes, the IIIe Cycle Romand de mathématiques.

Conference announcements:

G.N. Arzhantseva, Genericity of Howson's property of finitely presented groups,
International Algebraic Conference dedicated to the memory of D.K. Faddeev, Saint-Petersburg, Russia, 24-30 June, 1997. Abstracts, 158-159.

G.N. Arzhantseva, Generic classes of finitely presented groups,
International Algebraic Conference dedicated to the memory of D.K. Faddeev, Saint-Petersburg, Russia, 24-30 June, 1997. Abstracts, 158-159.

G.N. Arzhantseva, Generic classes of finitely presented groups,
International Conference "Mathematics. Modeling. Ecology" Volgograd, Russia, 27-31 May, 1996. Abstracts, p.23.