LIST OF CITATIONS of publications by
Goulnara N. ARZHANTSEVA
more then 901 citations in total, excluding self-citations.
Last update: Nov. 22nd, 2022
Papers already published or accepted:
Summary
and comments to my list of publications
[57] G.N. Arzhantseva, M. Steenbock,
Rips construction without unique product, Pacific Journal of
Mathematics, 322(1) (2023), 1-9. pdf
12 citations by
M. Arenas, A cubical Rips construction, (2022), arXiv:2202.01048.
E. Einstein, T. Ng, Relative cubulation of small cancellation free
products, (2021), arXiv:2111.03008.
M. Finn-Sell, Almost quasi-isometries and more non-C*-exact groups,
Mathematical Proceedings of the Cambridge Philosophical Society 162
(2017), no. 3, pp. 393-403.
G. Gardam, A counterexample to the unit conjecture for group rings,
Annals of Mathematics (2) 194 (2021), no. 3, 967-979.
D. Gruber, Infinitely presented C(6)-groups are SQ-universal, J.
Lond. Math. Soc. (2) 92 (2015), no. 1, 178-201.
D. Gruber, A. Martin, M. Steenbock, Finite index subgroups without
unique product in graphical small cancellation groups, Bull. Lond.
Math. Soc. 47 (2015), no. 4, 631–638.
D. Gruber, A. Sisto, Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic, Annales de
l'Institut Fourier, 68 (2018) no. 6, 2501-2552.
K. Khan, Fundamental groups of certain von Neumann algebras, PhD
thesis, (2020), Vanderbilt University.
K. Khan, Subgroups of lacunary hyperbolic groups and free products,
(2020), arXiv:2002.08540.
S. Kionke, J. Raimbault, N. Dunfield, On geometric aspects of diffuse
groups, Doc. Math. 21 (2016), 873-915.
A. Martin, M. Steenbock, A combination theorem for cubulation in
small cancellation theory over free products, Ann. Inst. Fourier, 67
(2017), no. 4, 1613-1670.
J. Öinert, Units, zero-divisors and idempotents in rings graded by
torsion-free groups, (2019), arXiv:1904.04847.
[56] G.N. Arzhantseva, A. Biswas,
Logarithmic girth expander graphs of SL_n(F_p), Journal of
Algebraic Combinatorics, 56 (2022), 691-723. pdf
10 citations by
I. Benjamini, M. Fraczyk, G. Kun, Expander spanning subgraphs with
large girth, (2020), arXiv:2012.15502.
A. Biswas, Flexibility and movability in Cayley graphs, (2019),
arXiv:1911.06261.
A. Biswas, J. P. Saha, Expansion in Cayley graphs, Cayley sum graphs
and their twists, (2021), arXiv:2103.05935.
T. Budzinski, N. Curien, B. Petri, On the minimal diameter of closed
hyperbolic surfaces, Duke Math. J. 170(2) (2021), 365-377.
A. S. Detinko, W. A. de Graaf, 2-Generation of simple Lie algebras
and free dense subgroups of algebraic groups, Journal of Algebra 545
(2020), 159-173.
D. Gruber, A. Sisto, Divergence and quasi-isometry classes of random
Gromov's monsters, (2018), arXiv:1805.04039.
C. Le Coz, C. Battarbee, R. Flores, Th. Koberda, D. Kahrobaei,
Post-quantum hash functions using SL_n(F_p), (2022), arXiv:2207.03987.
M. W. Liebeck, A. Shalev, Girth, words and diameter, Bull. London
Math. Soc. 51 (2019), no. 3, 539-546.
M. Polak, E. Zhupa, Keyed hash function
from large girth expander graphs, Albanian Journal of
Mathematics, 16(1) (2022), 25-39.
M. Zeggel, The bounded isomorphism conjecture for box spaces of
residually finite groups, (2021), arXiv:2103.16967.
[55] G.N. Arzhantseva, M. Hagen,
Acylindrical hyperbolicity of cubical small-cancellation groups,
Algebraic & Geometric Topology 22(5) (2022), 2007-2078. pdf
5 citations by
M. Arenas, Cubical small-cancellation theory and large-dimensional
hyperbolic groups, Thesis, University of Cambridge, (2023).
M. Arenas, K. Jankiewicz, D. Wise, Hyperbolicty in non-metric cubical
small cancellation, arXiv:2309.16860.
A. Genevois, Coning-off CAT(0) cube complexes, Ann. Inst. Fourier
(Grenoble), 71 (2021), no. 4, 1535–1599.
A. Genevois, A. Stocker, Partially CAT(−1) groups are acylindrically
hyperbolic, Bull. Soc. Math. France 147 (2019), no. 3, 377–394.
D. Gruber, A. Sisto, Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic, Ann. Inst.
Fourier (Grenoble), 68 (2018), no. 6, 2501–2552.
[54] G.N. Arzhantseva, S. Gal, On
approximation properties of semidirect products of groups,
Annales mathematiques Blaise Pascal, 27(1) (2020), 125-130. pdf
5 citations by
F. Berlai, Residual properties of free products, Comm. Algebra 44
(2016), no. 7, 2959-2980.
A. Bhattacharya, M. Brannan, A. Chirvasitu, S. Wang, Property (T),
property (F) and residual finiteness for discrete quantum groups, J.
Noncommut. Geom. 14 (2020), no. 2, 567-589.
L. Bowen, P. Burton, Locally compact sofic groups, (2021),
arXiv:2106:09118.
M. Doucha, J. Gismatullin, On Dual surjunctivity and applications,
(2020), arXiv:2008:10565.
D. F. Holt, S. Rees, Some closure results for C-approximable groups,
Pacific J. Math. 287 (2017), no. 2, 393-409.
[53] G.N. Arzhantseva, F. Berlai, M.
Finn-Sell, L. Glebsky, Unrestricted wreath products and sofic
groups,
International Journal of Algebra and Computation, 29(02) (2019),
343-355. pdf
4 citations by
L. Bowen, P. Burton, Locally compact sofic groups, (2021),
arXiv:2106:09118.
J. Brude, R. Sasyk, Permanence properties of verbal products and
verbal wreath products of groups, (2019), arXiv:1909.07800.
J. Brude, R. Sasyk, Metric approximations of unrestricted wreath
products when the acting group is amenable, (2020),
arXiv:2004.05735.
R. Ji, C. Ogle, B. Ramsey, Relative amenability and relative soficity,
(2018), arXiv:1807.07600
[52] G.N. Arzhantseva, Ch. Cashen,
Cogrowth for group actions with strongly contracting elements,
Ergodic Theory and Dynamical Systems, 40(7) (2020), 1738-1754.
pdf
2 citations by
I. Gekhtman, A. Levit, Critical exponents of invariant random
subgroups in negative curvature, Geom. Funct. Anal. 29 (2019), no.
2, 411-439.
K. Matsuzaki, Y. Yabuki, J. Jaerisch, Normalizer, divergence type,
and Patterson measure for discrete groups of the Gromov hyperbolic space,
Groups Geom. Dyn. 14 (2020), no. 2, 369-411.
[51] G.N. Arzhantseva, L. Paunescu,
Constraint metric approximations and equations in groups,
Journal of Algebra, 516 (2018), 329-351. pdf
4 citations by
H. Bradford, Local permutation
stability, (2022), arXiv:2211.15249.
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups,
(2021), arXiv:2105.00516.
A. Ioana, Almost commuting matrices and stability for product groups,
(2021), arXiv:2108.09589.
A. Ioana, Stability for product groups and property (τ), J.
Algebra 516 (2018), J. Funct. Anal. 279 (2020), no. 9, 108729, 32 pp.
[50] G.N. Arzhantseva, C. Drutu,
Geometry of infinitely presented small cancellation groups and
quasi-homomorphisms,
Canadian Journal of Mathematics, 71(5) (2019), 997-1018. pdf
5 citations by
M. Bradenbursky, Ś. Gal, J. Kędra, M. Marcinkowski, The cancellation
norm and the geometry of bi-invariant word metrics, Glasg. Math. J.
58 (2016), no. 1, 153–176.
I. Chatterji, Introduction to the rapid decay property, Around
Langlands correspondences, 53-72, Contemp. Math., 691, Amer. Math. Soc.,
Providence, RI, 2017.
D. Gruber, A. Sisto, Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic, Ann. Inst.
Fourier (Grenoble) 68 (2018), no. 6, 2501-2552.
A. Martin, Complexes of groups and geometric small cancelation over
graphs of groups, Bull. Soc. Math. France 145 (2017), no. 2,
193-223.
M. Sapir, The rapid decay property and centroids in groups, J.
Topol. Anal. 7 (2015), no. 3, 513–541.
[49] G.N. Arzhantseva, Ch. Cashen, D.
Gruber, D. Hume, Negative curvature in graphical small cancellation
groups,
Groups, Geometry and Dynamics, 13(2) (2019), 579-632. pdf
12 citations by
T. Aougab, M. G. Durham, S. J. Taylor, Pulling back stability with
applications to Out(Fn) and relatively hyperbolic groups, J. Lond.
Math. Soc. (2) 96 (2017), no. 3, 565-583.
Ch. Cashen, Morse subsets of CAT(0) spaces are strongly contracting,
Geom. Dedicata 204 (2020), 311–314.
Ch. Cashen, J. Mackay, A metrizable topology on the contracting
boundary of a group Trans. Amer. Math. Soc. 372 (2019), no. 3,
1555–1600.
M. Cordes, D. Hume, Stability and the Morse boundary J. Lond.
Math. Soc. (2) 95 (2017), no. 3, 963–988.
R. Coulon, D. Gruber, Small cancellation theory over Burnside groups,
Adv. Math. 353 (2019), 722–775.
I. Gekhtman, W. Yang, Counting conjugacy classes in groups with
contracting elements , (2018), arXiv:1810.02969.
D. Gruber, A. Sisto, Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic Ann. Inst. Fourier
(Grenoble) 68 (2018), no. 6, 2501–2552.
S. Han, Relative Hyperbolicity of graphical small cancellation groups
, (2020), arXiv:2010.13528.
D. Hume, A. Sisto, Groups with no coarse embeddings into hyperbolic
groups New York J. Math. 23 (2017), 1657–1670.
M. Incenerti-Medici, Comparing topologies on the Morse boundary and
quasi-isometry invariance, Geom. Dedicata 212 (2021), 153-176.
W. Yang, Statistically convex-cocompact actions of groups with
contracting elements, Int. Math. Res. Not. IMRN 2019, no. 23,
7259-7323.
W. Yang, Genericity of contracting elements in groups, Math. Ann.
376 (2020), no. 3-4, 823-861.
[48] G.N. Arzhantseva, R. Tessera,
Admitting a coarse embedding is not preserved under group extensions,
International Mathematics Research Notices, 2019 (20) (2019), 6480-6498.
pdf
9 citations by
B. Braga, , Y. C. Chung, and K. Li, Coarse Baum-Connes conjecture and
rigidity for Roe algebras, Journal of Functional Analysis 279
(2020), no. 9, 108728.
C. Bönicke, C. Dell’Aiera, Going-down functors and the Künneth
formula for crossed products by étale groupoids, Transactions of the
American Mathematical Society, 372 (2019), no. 11, 8159-8194.
K. Boucher, On non-amenable embeddable spaces in relation with free
products, (2018), arXiv:1801.04889.
T. Delabie, A. Khukhro, Box spaces of the free group that neither
contain expanders nor embed into a Hilbert space. Advances in
Mathematics 336 (2018), 70-96.
J. Deng, The Novikov conjecture and extensions of coarsely embeddable
groups, (2019), arXiv:1910.05381.
J. Deng, Q. Wang, G. Yu, The coarse Baum-Connes conjecture for
certain extensions and relative expanders, (2021), arXiv:2102.10617.
L. Guo, Z. Luo, Q. Wang, Y. Zhang,K-theory of the maximal and reduced
Roe algebras of metric spaces with A-by-CE coarse fibrations,
(2021), arXiv:2110.15624.
G. Li, X. Wang, Remarks on strong embeddability for discrete metric
spaces and groups, arXiv:1709.02522.
K. Li, J. Špakula, J. Zhang, Measured asymptotic expanders and
rigidity for Roe algebras, (2020), arXiv:2010.10749.
[47] G.N. Arzhantseva, G.A. Niblo, N.
Wright, J. Zhang, A characterization for asymptotic dimension
growth,
Algebraic & Geometric Topology, 18 (2018), 493-524. pdf
4 citations by
T. Davila, Decomposition complexity growth of finitely generated
groups, (2019), arXiv:1902.08561.
T. Davila, Infinite-dimensional coarse geometry of groups and spaces,
PhD thesis, 2020, University of Florida.
E. Fioravanti, Superrigidity of actions on finite rank median spaces,
Adv. Math. 352 (2019), 1206–1252.
J. Wang, Z. Xie, G. Yu, Decay of scalar curvature on uniformly
contractible manifolds with finite asymptotic dimension, (2021),
arXiv:2101.11584.
[46] G.N. Arzhantseva, Ch. Cashen, D.
Gruber, D. Hume, Characterizations of Morse quasi-geodesics via
superlinear divergence and sublinear contraction,
Documenta Mathematica, 22 (2017), 1193-1224. pdf
29 citations by
C. Abbott, J. Behrstock, M. G. Durham, Largest acylindrical actions
and Stability in hierarchically hyperbolic groups, Trans. Amer.
Math. Soc. Ser. B 8 (2021), 66-104.
T. Aougab, M. G. Durham, S. J. Taylor, Pulling back stability with
applications to Out(Fn) and relatively hyperbolic groups J. Lond.
Math. Soc. (2) 96 (2017), no. 3, 565-583.
A. Bartels, M. Bestvina, The Farrell-Jones conjecture for mapping
class groups, Invent. Math. 215 (2019), no. 2, 651-712.
J. Beyrer, E. Fioravanti, Cross ratios and cubulations of hyperbolic
groups, (2018), arXiv:1810.08087.
N. Brady, H. C. Tran, Divergence of finitely presented groups,
(2020), arXiv:2002.03653.
N. Brady, H. C. Tran, Divergence of finitely presented subgroups of
CAT(0) groups, (2020), arXiv:2012.15803.
Ch. Cashen, Quasi-isometries need not induce homeomorphisms of
contracting boundaries with the Gromov product topology Anal. Geom.
Metr. Spaces 4 (2016), no. 1, 278–281.
Ch. Cashen, Morse subsets of CAT(0) spaces are strongly contracting
Geom. Dedicata 204 (2020), 311–314.
Ch. Cashen, J. Mackay, A metrizable topology on the contracting
boundary of a group Trans. Amer. Math. Soc. 372 (2019), no. 3,
1555–1600.
M. Cordes, A survey on Morse boundaries & stability, (2017),
arXiv:1704.07598.
M. Cordes, D. Hume, Stability and the Morse boundary J. Lond.
Math. Soc. (2) 95 (2017), no. 3, 963–988.
C. Druţu, S. Mozes, M. Sapir, Corrigendum to "Divergence in lattices
in semisimple Lie groups and graphs of groups'', Trans. Amer. Math.
Soc. 370 (2018), no. 1, 749-754.
E. Fink, Morse geodesics in torsion groups, (2017),
arXiv:1710.11191.
E. Fioravanti, Cross ratios on cube complexes and length-spectrum
rigidity, PhD thesis, 2019, University of Oxford.
M. Incenerti-Medici, Comparing topologies on the Morse boundary and
quasi-isometry invariance, Geom. Dedicata 212 (2021), 153-176.
M. Hagen, Large facing tuples and a strengthened sector lemma,
(2020), arXiv:2005.09536.
L. Huang, B. Kleiner, S. Stadler, Morse quasiflats I, (2019),
arXiv:1911.04656.
H. Kim, Stable subgroups and Morse subgroups in mapping class groups,
Internat. J. Algebra Comput. 29 (2019), no. 5, 893-903.
S. C. Mousley, J. Russell, Hierarchically hyperbolic groups are
determined by their Morse boundaries, (2018), arXiv:1801.04867.
D. Murray, Y. Qing, A. Zalloum, Sublinearly Morse geodesics in CAT(0)
spaces: Lower divergence and hyperplane characterization, (2020),
arXiv:2008.09199.
A. Pal, R. Pandey, Acylindrical hyperbolicity of subgroups, New
York J. Math. 26 (2020), 1213-1231.
A. Pal, R. Pandey, Contracting boundary of a cusped space,
(2020), arXiv:2012.08259.
A. Pal, S. Paul, Strongly contracting geodesics in a tree of spaces,
(2019), arXiv:1904.09906.
Y. Qing, K. Rafi, G. Tiozzo, Sublinearly Morse boundary I: CAT(0)
spaces, (2020), arXiv:1909.02096.
Y. Qing, K. Rafi, G. Tiozzo, Sublinearly Morse boundary II: Proper
geodesic spaces, (2020), arXiv:2011.03481.
Y. Qing, A. Zalloum, Rank one isometries in sublinearly morse
boundaries of CAT(0) groups, (2019), arXiv:1911.03296.
J. Russell, D. Spriano, H.C. Tran, Convexity in hierarchically
hyperbolic spaces, (2018), arXiv:1809.09303.
J. Russell, D. Spriano, H.C. Tran, The local-to-global property for
Morse quasi-geodesics, (2019), arXiv:1908.11292.
H. C. Tran, On strongly quasiconvex subgroups, Geom. Topol. 23
(2019), no. 3, 1173-1235.
[45] G.N. Arzhantseva, L. Paunescu,
Linear sofic groups and algebras,
Transactions of the American Mathematical Society, 369 (2017),
2285-2310. pdf
28 citations by
A. Anderson, M. Lupini, The Fraïssé limit of matrix algebras with the
rank metric, (2017), arXiv:1712.04431.
J. Brude, R. Sasyk, Permanence properties of verbal products and
verbal wreath products of groups, (2019), arXiv:1909.07800.
J. Brude, R. Sasyk, Metric approximations of unrestricted wreath
products when the acting group is amenable, (2020),
arXiv:2004.05735.
V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups
and Connes' embedding conjecture, Lecture Notes in Mathematics 2136,
Springer 2015.
T. Ceccherini-Silberstein, M. Coornaert, On sofic monoids ,
Semigroup Forum 89 (2014), no. 3, 546–570.
M. de Chiffre, Approximate representations of groups, PhD thesis,
2018, Technischen Universität Dresden.
M. Doucha, Metric topological groups: their metric approximation and
metric ultraproducts, Groups Geom. Dyn. 12 (2018), no. 2, 615-636.
G. Elek, Convergence and limits of linear representations of finite
groups, J. Algebra 450 (2016), 588-615.
G. Elek, Infinite dimensional representations of finite dimensional
algebras and amenability, (2015), arXiv:1512.03959.
G. Elek, L. Grabowski, Almost commuting matrices with respect to the
rank metric , (2017), arXiv:1708.05338
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups,
(2021), arXiv:2105.00516.
L. Glebsky, Approximations of groups, characterizations of sofic
groups, and equations over groups, J. Algebra 477 (2017), 147-162.
M. Gromov, Number of questions, 2014,
http://www.ihes.fr/~gromov/PDF/Problems-marc6-11-2014.pdf
M. Gromov, Morse spectra, homology measures, spaces of cycles and
parametric packing problems, Ann. of Math. Stud. 205 (2020),
141-205.
B. Hayes, A. W. Sale, Metric approximations of wreath products,
Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 423-455.
D. F. Holt, S. Rees, Some closure results for C-approximable groups,
(2016), arXiv:1601.01836
A. Ivanov, Sofic metric groups and continuous logic, (2016),
arXiv:1604.08446
A. Ivanov, Metric ultraproducts of finite groups with respect to some
length functions, (2014), arXiv:1401.0857
A. Ivanov, Soficity and hyperlinearity for metric groups,
Topology Appl. 235 (2018), 146-156.
A. Korchagin, MF-property for countable discrete groups, (2017),
arXiv:1704.06906.
M. Lupini, An invitation to model theory and C*-algebras, Bull.
Symb. Log. 25 (2019), no. 1, 34-100.
N. Nikolov, J. Schneider, A. Thom, Some remarks on finitarily
approximable groups, J. Éc. polytech. Math. 5 (2018), 239-258.
L. M. Rivera, N. M. Veyna García, Aproximación métrica de grupos: una
breve perspectiva, (2017), arXiv:1709.01202
J. Schneider, On ultraproducts of compact quasisimple groups, PhD
thesis, 2021, Universität Leipzig.
A. Stolz, Linear approximation of groups and ultraproducts of compact
simple groups, PhD thesis, 2013, Universität Leipzig.
A. Stolz, Properties of linearily sofic groups, (2013),
arXiv:1309.7830.
A. Thom, Finitary approximations of groups and their applications,
Proceedings of the ICM (2018).
S. Virili, A point-free approach to L-Surjunctivity and stable
finiteness, (2014), arXiv:1410.164.
S. Virili, Group representations, algebraic dynamics and torsion
theories, PhD thesis, 2014, Universitat Autònoma de Barcelona.
[44] G.N. Arzhantseva, Ch. Cashen, J. Tao,
Growth tight actions,
Pacific Journal of Mathematics, 278(1) (2015), 1-49. pdf
23 citations by
A. Broise-Alamichel, J. Parkkonen, F. Paulin, Equidistribution and
counting under equilibrium states in negative curvature and trees,
Applications to non-Archimedean Diophantine approximation. Progress in
Mathematics, 329, Birkhäuser/Springer, 2019.
C. Cashen, J. Tao, Growth tight actions of product groups, Groups
Geom. Dyn. 10 (2016), no. 2, 753-770.
M. Cordes, J.Russell, D. Spriano, A. Zalloum, Regularity of Morse
geodesics and growth of stable subgroups, (2020), arXiv:2008.06379.
R. Coulon, R. Dougall, B. Schapria, S. Tapie, Twisted
Patterson-Sullivan measures and applications to amenability and
coverings, (2018), arXiv:1809.10881.
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups,
Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505-530.
S. Das, M. Mj, Controlled Floyd separation and non relatively
hyperbolic groups, J. Ramanujan Math. Soc. 30 (2015), no. 3,
267-294.
I. Gekhtman, S. J. Taylor, G. Tiozzo, Counting problems in graph
products and relatively hyperbolic groups, Israel J. Math. 237
(2020), no. 1, 311-371.
I. Gekhtman, W. Yang, Counting conjugacy classes in groups with
contracting elements , (2018), arXiv:1810.02969.
S. Gouëzel, C. Noûs, B. Schapira, S. Tapie, Pressure at infinity and
strong positive recurrence in negativecurvature, (2020),
arXiv:2007.08816v2.
J. Han, Growth of pseudo-anosov conjugacy classes in Teichmüller
space, (2021), arXiv:2105.08640.
J. Han, Growth rate of dehn twist lattice points in Teichmüller space,
(2021), arXiv:2105.08624.
S. Han, W. Yang, Generic free subgroups and statistical hyperbolicity,
(2018), arXiv:1812.06265.
Z. He, J. Liu, W. Yang, Large quotients of group actions with a
contracting element, (2020), arXiv:2007.15825.
I. Kapovic, J. Maher, C. Pfaff, S.J. Taylor, Random outer
automorphisms of free groups: Attracting trees and their singularity
structures, (2018), arXiv:1805.12382.
K. Matsuzaki, Growth and cogrowth tightnessof Kleinian and hyperbolic
groups, RIMS Kôkyûroku Bessatsu B66 (2017), 21-36.
M. Mj, P. Roy, Stable random fields, Bowen-Margulis measures and
extremal cocycle growth, (2018), arXiv:1809.08295v1.
Y. Qing, K. Rafi, G. Tiozzo, Sublinearly Morse boundary II: Proper
geodesic spaces, (2020), arXiv:2011.03481.
K. Rafi, Y. Verberne, Geodesics in the mapping class group,
(2018), arXiv:1810.12489.
J. Russell, D. Spriano, H.C. Tran, The local-to-global property for
Morse quasi-geodesics, (2019), arXiv:1908.11292.
Y. Verberne, Pseudo-Anosov homeomorphisms constructed using poitive
Dehn twists, PhD thesis, 2020, University of Toronto.
B. Wiest, Garside groups and geometry, (2020), arXiv:2008.08802.
W. Yang, Statistically convex-cocompact actions of groups with
contracting elements, Int. Math. Res. Not. IMRN 2019, no. 23,
7259-7323.
W. Yang, Genericity of contracting elements in groups, Math. Ann.
376 (2020), no. 3-4, 823-861.
[43] G.N. Arzhantseva, L. Paunescu,
Almost commuting permutations are near commuting permutations,
Journal of Functional Analysis, 269(3) (2015), 745-757. pdf
43 citations by
S. Atkinson, Some results on tracial stability and graph products,
Indiana Univ. Math. J. 70 (2021), no. 3, 1167–1187.
S. Atkinson, S. Kunnawalkam Elayavalli, On ultraproduct embeddings
and amenability for tracial von Neumann algebras, Int. Math. Res.
Not. IMRN 2021, no. 4, 2882–2918.
O. Becker, M. Chapman, Stability of approximate group actions:
uniform and probabilistic, J. Eur. Math. Soc. (2022), in press.
O. Becker, A. Lubotzky, Group stability and Property (T), J.
Funct. Anal. 278 (2020), no. 1, 108298, 20 pp.
O. Becker, A. Lubotzky, J. Mosheiff, Stability and testability:
equations in permutations, (2020), arXiv:2011.05234.
O. Becker, A. Lubotzky, J. Mosheiff, Testability of relations between
permutations, 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), 2022, pp. 286-297.
O. Becker, A. Lubotzky, J. Mosheiff, Testability in group theory,
(2022), arXiv:2204.04539.
O. Becker, A. Lubotzky, A. Thom, Stability and invariant random
subgroups, Duke Math. J. 168 (2019), no. 12, 2207-2234.
O. Becker, J. Mosheiff, Abelian groups are polynomially stable,
Int. Math. Res. Not. IMRN 2021, no. 20, 15574–15632.
L. Bowen, P. Burton, Flexible stability and nonsoficity, Trans.
Amer. Math. Soc. 373 (2020), no. 6, 4469–4481.
H. Bradford, Local permutations
stability, (2022), arXiv:2211.15249.
P. Burton, Hyperlinear approximations to amenable groups come from
sofic approximations, (2021), arXiv:2110.03076.
V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups
and Connes' embedding conjecture, Lecture Notes in Mathematics 2136,
Springer 2015.
M. Cavaleri, Algorithms and quantifications in amenable and sofic
groups, PhD thesis, Universita degli studi di Roma La Sapienza
(2016).
M. Cavaleri, R. Munteanu, L. Paunescu, Two special subgroups of the
universal sofic group, Ergodic Theory Dynam. Systems 39 (2019), no.
12, 3250-3261.
M. De Chiffre, Approximate representations of groups, PhD thesis,
Technische Universität Dresden (2019).
M. De Chiffre, L. Glebsky, A. Lubotzky, A. Thom, Stability,
cohomology vanishing, and non-approximable groups, Forum Math. Sigma
8 (2020), Paper No. e18, 37 pp.
S. Eilers, T. Shulman, A. Sørensen, C*-stability of discrete groups,
Adv. Math. 373 (2020), 107324, 41 pp.
G. Elek, Ł. Grabowski, Almost commuting matrices with respect to the
rank metric, Groups Geom. Dyn. 15 (2021), no. 3, 1059–1083.
D. Enders, T. Shulman, Almost commuting matrices, cohomology, and
dimension, (2019), arXiv:1902.10451.
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups,
(2021), arXiv:2105.00516.
M. A. García Morales, L. Glebsky, Property of defect diminishing and
stability, (2019), arXiv:1911.11752v2.
D. Hadwin, T. Shulman, Stability of group relations under small
Hilbert-Schmidt perturbations, J. Funct. Anal. 275 (2018), no. 4,
761–792.
D. Hadwin, T. Shulman, Variations of projectivity for C*-algebras,
Pacific J. Math. 301 (2019), no. 2, 421-440.
H. Helfgott, K. Juschenko, Soficity, short cycles, and the Higman
group, Trans. Amer. Math. Soc. 371 (2019), no. 4, 2771–2795.
A. Ioana, Stability for product groups and property (τ), J.
Funct. Anal. 279 (2020), no. 9, 108729, 32 pp.
A. Ioana, On sofic approximations of F2×F2, Ergodic Theory Dynam.
Systems (2021), 1-19.
A. Ioana, Almost commuting matrices and
stability for product groups, (2021), ar Xiv:2108.09589
M. Kassabov, V. Kuperberg, T. Riley, Soficity and variations on
Higman’s group, J. Comb. Algebra 3 (1) (2019), 41–70.
J. König, A. Leitner, D. Neftin, Almost-regular dessins d'enfant on a
torus and sphere, Topology Appl. 243 (2018), 78–99.
N. Lazarovich, A. Levit, Y. Minsky, Surface groups are flexibly
stable, (2019), arXiv:1901.07182.
A. Levit, A. Lubotzky, Infinitely presented permutation stable groups
and invariant random subgroups of metabelian groups, Ergodic Theory
Dynam. Systems, 42(6) (2022), 2028-2063.
A. Levit, A. Lubotzky, Uncountably many permutation stable groups,
(2019), arXiv:1910.11722v1.
A. Levit, I. Vigdorovich, Characters of solvable groups,
Hilbert-Schmidt stability and dense periodic measures, (2022),
arXiv:2206.02268.
A. Lubotzky, I. Oppenheim, Non p-norm approximated groups, J. Anal.
Math. 141 (2020), no. 1, 305-321.
M. Lupini, An invitation to model theory and C*-algebras, Bull.
Symb. Log. 25 (2019), no. 1, 34–100.
K. Mallahi-Karai, M. Mohammadi Yekta, Optimal linear sofic
approximations of countable groups, (2021), arXiv:2112.10111.
M. A. G. Morales, L. Glebsky, Property
of defect diminishing and stability, International Electronic
Journal of Algebra 31 (2022), 49-54.
R. Moreno, L.M. Rivera, Blocks in cycles and k-commuting permutations,
SpringerPlus (2016) 5: 1949.
L. Oppenheim, Garland's method with Banach coefficients, (2020),
arXiv:2009.01234.
L. Paunescu, F. Radulescu, A generalisation to Birkhoff-von Neumann
theorem, Adv. Math. 308 (2017), 836-858.
L. Paunescu, A. Sipos, A proof-theoretic metatheorem for trcial von
Neumann algebras, (2022), arXiv:2209.01797.
L. M. Rivera, Integer sequences and k-commuting permutations,
Integers 15 (2015), Paper No. A46, 22 pp.
[42] G.N. Arzhantseva, D. Osajda,
Infinitely presented small cancellation groups have Haagerup property,
Journal of Topology and Analysis, 7(3) (2015), 389-406. pdf
12 citations by
V. Alekseev, M. Finn-Sell, Sofic boundaries of groups and coarse
geometry of sofic approximations, Groups Geom. Dyn. 13 (2019), no.
1, 191-234.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky
conjecture, Operator algebras and their applications, 1-33, Contemp.
Math., 671, Amer. Math. Soc., Providence, RI, 2016.
Y. Cornulier, Group actions with commensurated subsets, wallings and
cubings, (2013), arXiv:1302.5982v2.
M. Finn-Sell, Almost quasi-isometries and more non-exact groups,
Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393-403.
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups,
(2021), arXiv:2105.00516.
D. Gruber, Infinitely presented C(6)-groups are SQ-universal, J.
Lond. Math. Soc. (2) 92 (2015), no. 1, 178-201.
D. Gruber, A. Sisto, Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic, Ann. Inst.
Fourier (Grenoble) 68 (2018), no. 6, 2501-2552.
S. Knudby, On connected Lie groups and the approximation property,
C. R. Math. Acad. Sci. Paris 354 (2016), no. 7, 697-699.
A. Martin, Complexes of groups and geometric small cancellation over
graphs of groups, Bull. Soc. Math. France 145 (2017), no. 2,
193-223.
M. Mimura, Amenability versus non-exactness of dense subgroups of a
compact group. J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part II: Fibred coarse embeddings, Anal. Geom. Metr.
Spaces 7 (2019), no. 1, 62-108.
D. Osajda, Small cancellation labellings of some infinite graphs and
applications, Acta Math. 225 (2020), no. 1, 159-191.
[41] G.N. Arzhantseva, R. Tessera,
Relative expanders,
Geometric and Functional Analysis [GAFA], 25(2) (2015), 317-341.
pdf
18 citations by
P. Awasthi, M. Charikar, R. Krishnaswamy, and A. K. Sinop, Spectral
Embedding of k-Cliques, Graph Partitioning and k-Means, In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science (ITCS '16). Association for Computing Machinery, New
York, NY, USA, 301–310.
C. Cave, On coarse geometric properties of discrete andlocally
compact groups, PhD thesis, 2015, University of Southampton.
K. Das, From the geometry of box spaces to the geometry and measured
couplings of groups, J. Topol. Anal. 10 (2018), no. 2, 401-420.
T. Delabie, Large scale geometry of box spaces, PhD thesis, 2018,
Université de Neuchâtel.
T. Delabie, A. Khukhro, Box spaces of the free group that neither
contain expanders nor embed into a Hilbert space, Adv. Math. 336
(2018), 70-96.
J. Deng, Q. Wang, G. Yu, The coarse Baum-Connes conjecture for
certain extensions and relative expanders, (2021), arXiv:2102.10617.
A. Eskenazis, Geometric inequalities and advances in the Ribe program,
PhD thesis, 2019, Princeton University.
A. Eskenazis, M. Mendel, A. Naor, Nonpositive curvature is not
coarsely universal, Invent. Math. 217 (2019), no. 3, 833-886.
L. Guo, Z. Luo, Q. Wang, Y. Zhang,K-theory of the maximal and reduced
Roe algebras of metric spaces with A-by-CE coarse fibrations,
(2021), arXiv:2110.15624.
D. Hume, A continuum of expanders, (2014), Fund. Math. 238
(2017), no. 2, 143-152.
A. Khukhro, K. Li, F. Vigolo, J. Zhang, On the structure of
asymptotic expanders, Adv. Math. 393 (2021), Paper No. 108073, 35
pp.
K. Li, J. Špakula, J. Zhang, Measured asymptotic expanders and
rigidity for Roe algebras, (2020), arXiv:2010.10749.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part II: Fibred coarse embeddings, Anal. Geom. Metr.
Spaces 7 (2019), no. 1, 62-108.
T. Pillon, Affine isometric actions of groups, PhD thesis, 2015,
Université de Neuchâtel.
M. de la Salle, A duality operators/Banach spaces , (2021),
arXiv:2101.07666.
D. Sawicki, J. Wu, Straightening warped cones, Journal of
Topology and Analysis (2020), 1-25.
Q. Wang, Y. Zhang, The coarse Novikov conjecture for extensions of
coarsely embeddable groups, (2021), arXiv:2105.04753.
J. Xia, X. Wang, Strong embeddability for groups acting on metric
spaces, Chin. Ann. Math. Ser. B 40 (2019), no. 2, 199-212.
[40] G.N. Arzhantseva, Asymptotic
approximations of finitely generated groups,
in Research Perspectives CRM Barcelona-Fall 2012 (Trends in
Mathematics), Birkhäuser, Basel, vol. 1, 2014, 7-16. pdf
12 citations by
J. Brude, R. Sasyk, Metric approximations of unrestricted wreath
products when the acting group is amenable, (2020),
arXiv:2004.05735.
V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups
and Connes' embedding conjecture, Lecture Notes in Mathematics 2136,
Springer 2015.
M. Cavaleri, Algorithms and quantifications in amenable and sofic
groups, PhD Thesis, 2016, the Sapienza University of Rome.
M. de Chiffre, Approximate representations of groups, PhD thesis,
Technische Universität Dresden (2019).
M. de Chiffre, L. Glebsky, A. Lubotzky, A. Thom, Stability,
cohomology vanishing, and non-approximable groups, Forum Math. Sigma
8 (2020), Paper No. e18, 37 pp.
V. Climenhaga, G. Knieper, K. War, Uniqueness of the measure of
maximal entropy for geodesic flows on certain manifolds without
conjugate points, Adv. Math. 376 (2021), 107452, 44 pp.
M. Dadarlat, Obstructions to matricial stability of discrete groups
and almost flat K-theory. Advances in Mathematics 384 (2021),
107722.
D. Enders, T. Shulman, Almost commuting matrices, cohomology, and
dimension, (2019), arXiv:1902.10451.
S. Eilers, T. Shulman, A. Sørensen, C*-stability of discrete groups,
Adv. Math. 373 (2020), 107324, 41 pp.
L. Glebsky, Approximations of groups, characterizations of sofic
groups, and equations over groups, J. Algebra 477 (2017), 147-162.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups, Journal of
Topology and Analysis 13 (2021), no. 1, 1–47.
P. Pueschel, On residual properties of groups and Dehn functions for
mapping tori of right angled Artin groups, PhD thesis, 2016, Cornell
University.
[39] G.N. Arzhantseva, J.-F. Lafont, A.
Minasyan, Isomorphism versus commensurability for a class of
finitely presented groups,
Journal of Group Theory, 17(2) (2014), 361-378. pdf
8 citations by
Y. Antolín, A. Minasyan, Tits alternatives for graph products, J.
Reine Angew. Math. 704 (2015), 55-83.
J. Belk, C. Bleak, Some undecidability results for asynchronous
transducers and the Brin-Thompson group 2V, Trans. Amer. Math. Soc.
369 (2017), no. 5, 3157-3172.
B. Cavallo, Algorithmic properties of poly-Z groups and secret
sharing using non-commutative groups, PhD thesis, 2015, The City
University of New York.
F. Dahmani, On suspensions and conjugacy of hyperbolic automorphisms,
Trans. Amer. Math. Soc. 368 (2016), no. 8, 5565-5577.
A.D. Logan, On the outer automorphism groups of finitely generated,
residually finite groups, J. Algebra 423 (2015), 890-901.
L. Paoluzzi, The notion of commensurability in group theory and
geometry, Representation spaces, twisted topological invariants and
geometric structures of 3-manifolds (2012), 124-137.
J. R. Peters, P. Sanyatit, Isomorphism of uniform algebras on the
2-torus, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 1,
89-106.
M. Weinstein, On the structure of a poly-group, (2020),
arXiv:2012.10510.
[38] G.N. Arzhantseva, E. Guentner, J.
Spakula, Coarse non-amenability and coarse embeddings,
Geometric and Functional Analysis [GAFA], 22(1) (2012), 22-36.
pdf
41 citations by
V. Alekseev, M. Finn-Sell, Sofic boundaries of groups and coarse
geometry of sofic approximations, Groups Geom. Dyn. 13 (2019), no.
1, 191-234.
C. Anantharaman-Delaroche, Amenability and exactness for groups,
group actions and operator algebras, ESI 2007, (version of 2015).
P. Ara, K. Li, F. Lledó, J. Wu, Amenability and uniform Roe algebras
J. Math. Anal. Appl. 459 (2018), no. 2, 686-716.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky
conjecture, Operator algebras and their applications, 1-33, Contemp.
Math., 671, Amer. Math. Soc., Providence, RI, 2016.
M. Bestvina, V. Guiradel, C. Horbez, Boundary amenability of Out(FN),
(2017), arXiv:1705.07017.
B. M. Braga, I. Farah, On the rigidity of uniform Roe algebras over
uniformly locally finite coarse spaces, Trans. Amer. Math. Soc. 374
(2021), no. 2, 1007-1040.
B. M. Braga, I. Farah, A. Vignati, Embeddings of uniform Roe algebras
Comm. Math. Phys. 377 (2020), no. 3, 1853-1882.
J. Brodzki, G. Niblo, J. Špakula, R. Willett, N. Wright, Uniform
local amenability, J. Noncommut. Geom. 7 (2013), no. 2, 583-603.
K. Boucher, On non-amenable embeddable spaces in relation with free
products, (2018), arXiv:1801.04889.
C. Cave, D. Dreesen, A. Khukhro, Embeddability of generalized wreath
products and box spaces, (2013), arXiv.org:1307.3122.
M. Cencelj, J. Dydak, A. Vavpetič, Coarse amenability versus
paracompactness, J. Topol. Anal. 6 (2014), no. 1, 125-152.
M. Cencelj, J. Dydak, A. Vavpetič, Large scale versus small scale,
Recent progress in general topology, III, 165-203, Atlantis Press,
Paris, 2014.
X. Chen, Q. Wang, X. Wang, Characterization of the Haagerup property
by fibred coarse embedding into Hilbert space, Bull. Lond. Math.
Soc. 45 (2013), no. 5, 1091-1099.
Y. C. Chung, Property A and coarse embeddability for fuzzy metric
spaces, (2021), arXiv:2102.10258.
Y. Cornulier, P. de la Harpe, Metric geometry of locally compact
groups, EMS Tracts in Mathematics Vol. 25, 2016.
K. Das, From the geometry of box spaces to the geometry and measured
couplings of groups, J. Topol. Anal. 10 (2018), no. 2, 401-420.
T. Delabie, A. Khukhro, Box spaces of the free group that neither
contain expanders nor embed into a Hilbert space, Adv. Math. 336
(2018), 70-96.
J. Deng, Q. Wang, G. Yu, The coarse Baum-Connes conjecture for
certain extensions and relative expanders, (2021), arXiv:2102.10617.
M. Finn-Sell, Fibred coarse embeddings, a-T-menability and the coarse
analogue of the Novikov conjecture, J. Funct. Anal. 267 (2014), no.
10, 3758-3782.
M. Finn-Sell, Almost quasi-isometries and more non-exact groups,
Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393-403.
M. Finn-Sell, J. Wu, The asymptotic dimension of box spaces for
elementary amenable groups, (2015), arXiv:1508.05018.
M. P. Gomez Aparicio, P. Julg, A. Valette, The Baum–Connes
conjecture: an extended survey, In Advances in Noncommutative
Geometry (pp. 127-244), 2019, Springer, Cham.
A. R. Harsy Ramsay, Locally compact property A groups, PhD
thesis, 2014, Purdue University.
R. Ji, C. Ogle, B. Ramsey, Strong embeddability and extensions of
groups, (2013), arXiv.org:1307.1935.
A. Khukhro, Box spaces, group extensions and coarse embeddings into
Hilbert space, J. Funct. Anal. 263 (2012), no. 1, 115-128.
A. Khukhro, Embeddable box spaces of free groups, Math. Ann. 360
(2014), no. 1-2, 53-66.
B. Kwaśniewski, K. Li, A. Skalski, The Haagerup property for twisted
groupoid dynamical systems, (2020), arXiv:2004.06317.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups, J. Topol.
Anal. 13 (2021), no. 1, 1–47.
D. Osajda, Small cancellation labellings of some infinite graphs and
applications, Acta Math. 225 (2020), no. 1, 159-191.
D. Osajda, Group cubization With an appendix by Mikaël Pichot,
Duke Math. J. 167 (2018), no. 6, 1049-1055.
M. Ostrovskii, Low-distortion embeddings of graphs with large girth,
J. Funct. Anal. 262 (2012), no. 8, 3548-3555.
M. Ostrovskii, Metric Embeddings: Bilipschitz and coarse embeddings
into Banach spaces, de Gruyter Studies in Mathematics, Vol. 49,
2013.
D. Pawlik, A (co)homological crieterion for property A of metric
space, Uniwersytet Warszawski, Praca semestralna nr 2, 2011/2012.
T. Pillon, Affine isometric actions of groups, PhD thesis, 2015,
Université de Neuchâtel.
T. Pillon, Coarse amenability at infinity, (2018),
arXiv:1812.11745.
J. Roe, R. Willett, Ghostbusting and property A, J. Funct. Anal.
266 (2014), no. 3, 1674-1684.
H. Sako, A generalization of expander graphs and local reflexivity of
uniform Roe algebras, J. Funct. Anal. 265 (2013), no. 7, 1367-1391.
D. Sawicki, Warped cones over profinite completions, J. Topol.
Anal. 10 (2018), no. 3, 563-584.
D. Sawicki, J. Wu, Straightening warped cones, Journal of
Topology and Analysis (2020), 1-25.
J. Špakula, R. Willett, A metric approach to limit operators,
Trans. Amer. Math. Soc. 369 (2017), no. 1, 263-308.
R. Willett, Property A and graphs with large girth, J. Topol.
Anal. 3 (2011), no. 3, 377-384.
[37] G.N. Arzhantseva and E. Guentner,
Coarse non-amenability and covers with small eigenvalues,
Mathematische Annalen, 354(3) (2012), 863-870. pdf
4 citations by
K. Das, From the geometry of box spaces to the geometry and measured
couplings of groups, J. Topol. Anal. 10 (2018), no. 2, 401-420.
A. Khukhro, A. Valette, Expanders and box spaces Adv. Math. 314
(2017), 806-834.
V. Manuilov, On a family of representations of residually finite
groups, Algebr. Represent. Theory 23 (2020), no. 4, 1727-1735.
E. le Masson, T. Sahlsten, Quantum ergodicity and Benjamini-Schramm
convergence of hyperbolic surfaces, Duke Math. J. 166 (2017), no.
18, 3425-3460.
[36] G.N. Arzhantseva, M. Bridson, T.
Januszkiewicz, I. Leary, A. Minasyan, J. Swiatkowski, Infinite
groups with fixed point properties,
Geometry & Topology, 13 (2009), 1229-1263. pdf
27 citations by
A. Bartels, K-theory and actions on Euclidean retracts In
Proceedings of the International Congress of Mathematicians(ICM 2018), pp.
1041-1062 (2019).
I. Belegradek, Topology of open nonpositively curved manifolds,
Geometry, topology, and dynamics in negative curvature, 32-83, London
Math. Soc. Lecture Note Ser., 425, Cambridge Univ. Press, Cambridge, 2016.
I. Belegradek, Ph. Nguyễn, T. Tâm, Non-aspherical ends and
non-positive curvature, Trans. Amer. Math. Soc. 368 (2016), no. 8,
5363-5376.
R. Biswas, Categories of modules over infinite groups, PhD
thesis, 2021, University of Manchester.
M. Bridson, On the dimension of CAT(0) spaces where mapping class
groups act, J. Reine Angew. Math. 673 (2012), 55-68.
M. Bridson, K. Vogtmann, Actions of automorphism groups of free
groups on homology spheres and acyclic manifolds, Comment. Math.
Helv. 86 (2011), no. 1, 73-90.
I. Chatterji, M. Kassabov, New examples of finitely presented groups
with strong fixed point properties, J. Topol. Anal. 1 (2009), no. 1,
1-12.
Y. Cornulier, Group actions with commensurated subsets, wallings and
cubings, (2013), arXiv:1302.5982.
O. Cotton-Barratt, Detecting ends of residually finite groups in
profinite completions, Math. Proc. Cambridge Philos. Soc. 155
(2013), no. 3, 379–389.
P. Dani, The large-scale geometry of right-angled Coxeter groups,
(2018), arXiv:1807.08787.
D. Fisher, L. Silberman, Groups not acting on manifolds, Int. Math.
Res. Not. 16 (2008), 11 pp.
D. Futer, A. Thomas, Surface quotients of hyperbolic buildings,
Int. Math. Res. Not. IMRN 2012, no. 2, 437-477.
G. Gandini, Bounding the homological finiteness length, Bull.
Lond. Math. Soc. 44 (2012), no. 6, 1209-1214.
G. Gandini, Cohomological invariants and the classifying space for
proper actions, Groups Geom. Dyn. 6 (2012), no. 4, 659-675.
T. Januszkiewicz, P.H. Kropholler, I.J. Leary, Groups possessing
extensive hierarchical decompositions, Bull. Lond. Math. Soc. 42
(2010), no. 5, 896-904.
S. John-Green, Cohomological finiteness properties of groups, PhD
thesis, 2014, University of Southampton.
J. H. Kim, On the actions of Higman-Thompson groups by homeomorphisms,
Bull. Korean Math. Soc. 57 (2020), no. 2, 449-457.
R. Kropholler, Finiteness Properties and CAT(0) groups, PhD
thesis, 2016, University of Oxford.
A. Kubena, A. Thomas, Density of commensurators for uniform lattices
of right-angled buildings, J. Group Theory 15 (2012), no. 5,
565–611.
A. Minasyan, D. Osin, Acylindrically hyperbolic groups with exotic
properties J. Algebra 522 (2019), 218-235.
A. Minasyan, D. Osin, S. Witzel, Quasi‐isometric diversity of marked
groups. Journal of Topology 14 (2021), no. 2, 488-503.
A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild
groups, Compos. Math. 147 (2011), no. 5, 1546-1572.
D. Osajda, A construction of hyperbolic Coxeter groups, Comment.
Math. Helv. 88 (2013), no. 2, 353-367.
D. Osajda, P. Przytycki, Boundaries of systolic groups, Geom.
Topol. 13 (2009), no. 5, 2807-2880.
D. Osin, Small cancellations over relatively hyperbolic groups and
embedding theorems, Annals of Mathematics, 172 (2010), 1-39.
Sh. Weinberger, Some remarks inspired by the C0 Zimmer program,
Geometry, rigidity, and group actions, 262-282, Chicago Lectures in
Math., Univ. Chicago Press, Chicago, IL, 2011.
[35] G.N. Arzhantseva, C. Drutu, and M.
Sapir, Compression functions of uniform embeddings of groups into
Hilbert and Banach spaces,
Journal für die Reine und Angewandte Mathematik, [Crelle's Journal], 633
(2009), 213-235. pdf
31 citations by
C. Anantharaman-Delaroche, Amenability and exactness for groups,
group actions and operator algebras, (2007),
http://www.univ-orleans.fr/mapmo/membres/anantharaman/publications/ESI07.pdf
T. Austin, Amenable groups with very poor compression
into Lebesgue spaces, Duke Math. J. 159 (2011), no. 2, 187–222.
T. Austin, A finitely-generated amenable group with very poor
compression into Lebesgue spaces, (2009), arXiv:0909.2047.
T. Austin, A. Naor, Y. Peres, The wreath product of Z with Z has
Hilbert compression exponent 2/3, Proc. Amer. Math. Soc. 137 (2009),
no. 1, 85-90.
L. Bartholdi, A. Erschler, Distortion of imbeddings of groups of
intermediate growth into metric spaces, Proc. Amer. Math. Soc. 145
(2017), no. 5, 1943–1952.
F. P. Baudier, Quantitative nonlinear embeddings into Lebesgue
sequence spaces, J. Topol. Anal. 8 (2016), no. 1, 117–150.
F. P. Baudier, On the metric geometry of stable metric spaces,
(2014), arXiv:1409.7738
F. P. Baudier, P. Motakis, T. Schlumprecht, A. Zsák, Stochastic
approximation of lamplighter metrics, (2020), arXiv:2003.06093.
J.-C. Birget, One-way permutations, computational asymmetry and
distortion, J. Algebra 320 (2008), no. 11, 4030-4062.
J. Brieussel, T. Zheng, Speed of random walks, isoperimetry and
compression of finitely generated groups, (2015), Ann. of Math. (2)
193 (2021), no. 1, 1-105.
Ch. Cave, D. Dreesen, Equivariant compression of certain direct limit
groups and amalgamated free products, Glasg. Math. J. 58 (2016), no.
3, 739–752.
J. Cheeger, B. Kleiner, A. Naor, Compression bounds for Lipschitz
maps from the Heisenberg group to L1, Acta Math. 207 (2011), no. 2,
291–373.
A. Dranishnikov, M. Sapir, On the dimension growth of groups, J.
Algebra 347 (2011), 23–39.
D. Dreesen, Equivariant and non-equivariant uniform embeddings into
products and Hilbert spaces, PhD thesis, 2011, Université de
Neuchâtel.
D. Dreesen, Hilbert space compression for free products and
HNN-extensions, J. Funct. Anal. 261 (2011), no. 12, 3585–3611.
S. Gal, Asymptotic dimension and uniform embeddings, Groups Geom.
Dyn. 2 (2008), no. 1, 63-84.
J. Higes, I. Peng, Assouad-Nagata dimension of connected Lie groups,
Math. Z. 273 (2013), no. 1-2, 283–302.
D. Hume, A continuum of expanders, (2014), Fund. Math. 238
(2017), no. 2, 143-152.
P.-N. Jolissaint, Embeddings of groups into Banach spaces, PhD
thesis, 2015, University of Neuchatel.
M. Kraus, Quantitative coarse embeddings of quasi-Banach spaces into
a Hilbert space, (2015), arXiv:1511.05214.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups, J. Topol. Anal. 13
(2021), no. 1, 1–47.
A. Naor, An introduction to the Ribe program, Jpn. J. Math. 7
(2012), no. 2, 167–233.
A. Naor, L1 embeddings of the Heisenberg group and fast estimation of
graph isoperimetry, Proceedings of the International Congress of
Mathematicians, Volume III, 1549–1575, Hindustan Book Agency, New Delhi,
2010.
A. Naor, Y. Peres, Embeddings of discrete groups and the speed of
random walks, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 076, 34
pp.
A. Naor, Y. Peres, Lp compression, traveling salesmen, and stable
walks, Duke Math. J. 157 (2011), no. 1, 53–108.
P. Nowak, G. Yu, Large-scale geometry, EMS Textbooks in
Mathematics. European Mathematical Society (EMS), Zürich, 2012, xiv+189pp.
A. Yu. Olshanskii, D.V. Osin, A quasi-isometric embedding theorem for
groups, Duke Math. J. 162 (2013), no. 9, 1621–1648.
T. Pillon, Affine isometric actions of groups, PhD thesis, 2015,
Université de Neuchâtel.
R. J. Putwain, Partial translation algebras for certain discrete
metric spaces, PhD thesis, 2010, University of Southhampton.
J.C. Robinson, Log-Lipschitz embeddings of homogeneous sets with
sharp logarithmic exponents and slicing products of balls, Proc.
Amer. Math. Soc. 142 (2014), no. 4, 1275–1288.
M. Sapir, Some group theory problems, Internat. J. Algebra
Comput. 17 (2007), no. 5-6, 1189-1214.
[34] G.N. Arzhantseva, V.S. Guba, M. Lustig
and J.-Ph. Préaux, Testing Cayley graph densities,
Annales mathematiques Blaise Pascal, 15(2) (2008), 169-221. pdf
7 citations by
J. Cannon, Amenability, Folner sets, and cooling functions,
(2009).
M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, Random sampling of
trivial words in finitely presented groups, Exp. Math. 24 (2015),
no. 4, 391–409.
M. Elder, C. Rogers, Sub-dominant cogrowth behaviour and the
viability of deciding amenability numerically, Exp. Math. 28 (2019),
no. 1, 67–80.
M. Elder, A. Rechnitzer, T. Wong, On the cogrowth of Thompson's group
F, Groups Complex. Cryptol. 4 (2012), no. 2, 301–320.
M. Elder and A. Rechnitzer and E. J. Janse van Rensburg and T. Wong,
On trivial words in finitely presented groups, (2012),
arXiv:1210.3425.
V. S. Guba, On the density of Cayley graphs of R. Thompson’s group F
in symmetric generators, International Journal of Algebra and
Computation (2021), 1-13.
S. Haagerup, U. Haagerup, M. Ramirez-Solano, A computational approach
to the Thompson group F, Internat. J. Algebra Comput. 25 (2015), no.
3, 381–432.
[33] G.N. Arzhantseva, A. Minasyan and D.
Osin, The SQ-universality and residual properties of relatively
hyperbolic groups,
Journal of Algebra, 315(1) (2007), 165-177. pdf
50 citations by
C. Abbott, S. Balasubramanya, D. Osin, Hyperbolic structures on
groups, (2017), Algebr. Geom. Topol. 19 (2019), no. 4, 1747–1835.
Y. Antolín, A. Minasyan, A. Sisto, Commensurating endomorphisms of
acylindrically hyperbolic groups and applications, Groups Geom. Dyn.
10 (2016), no. 4, 1149–1210.
S. Balasubramanya, Hyperbolic structures on Groups, PhD theis,
2018, Vanderbilt University.
J. Behrstock, M. Hagen, A. Sisto, Thickness, relative hyperbolicity,
and randomness in Coxeter groups, With an appendix written jointly
with P.-E. Caprace. Algebr. Geom. Topol. 17(2) (2017), 705–740.
I. Belegradek, Rigidity and relative hyperbolicity of real hyperbolic
hyperplane complements, Pure Appl. Math. Q. 8 (2012), no. 1, 15–51.
I. Belegradek, D. Osin, Rips construction and Kazhdan property (T),
Groups Geom. Dyn. 2 (2008), no. 1, 1-12.
I. Belegradek, A. Szczepanski, Endomorphisms of relatively hyperbolic
groups, with an appendix by Oleg V. Belegradek, Internat. J. Algebra
Comput. 18 (2008), no. 1, 97-110.
I. Belegradek, T. Tâm Nguyễn Phan, Non-aspherical ends and
non-positive curvature, Trans. Amer. Math. Soc. 368 (2016),
5363-5376.
D. Bisch, R. Nicoara, S. Popa, Continuous families of hyperfinite
subfactors with the same standard invariant, Internat. J. Math. 18
(2007), no.3, 255-267.
O. Bogopolski, K.-U. Bux, From local to global conjugacy of subgroups
of relatively hyperbolic groups, Internat. J. Algebra Comput. 27(3)
(2017), 299-314.
I. Bumagin, M. M. Zhang, On fully residually-R groups, Comm.
Algebra 44 (2016), no. 7, 2813–2827.
J. O. Button, Large groups of deficiency 1, Israel J. Math. 167
(2008), 111-140.
J. O. Button, Acylindrical hyperbolicity, non-simplicity and
SQ-universality of groups splitting over Z, J. Group Theory, 20(2),
371–383.
J. O. Button, R. P. Kropholler, Nonhyperbolic free-by-cyclic and
one-relator groups, New York J. Math. 22 (2016), 755–774.
P.-E. Caprace, N. Monod, Isometry groups of non-positively curved
spaces: discrete subgroups, J. Topology 2 (2009), no. 4, 701-746.
I. Chifan, A. Diaz-Arias, D. Drimbe, New examples of W* and
C*-superrigid groups, (2020), arXix:2010.01223.
I. Chifan, S. Das, K. Khan, Some applications of group theoretic Rips
constructions to the classification of von Neumann algebras, (2019),
arXiv:1911.11729.
I. Chifan, B. T. Udrea, Some rigidity results for II1 factors arising
from wreath products of property (T) groups, J. Funct. Anal. 278
(2020), no. 7, 108419, 32 pp.
R. Coulon, D. Osin, A non-residually finite group acting uniformly
properly on a hyperbolic space, (2018), arXiv:1804.09432.
F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups
and rotating families in groups acting on hyperbolic spaces, Mem.
Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
M. Edjvet, A. Vdovina, On the SQ-universality of groups with special
presentations, J. Group Theory (2010), 1433-5883.
I. Fernández Martínez, D. Serbin, Detecting conjugacy stability of
subgroups in certain classes of groups, J. Group Theory (2021), to
appear.
R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional
graph manifolds, Astérisque No. 372 (2015), xxi+177 pp.
D. Fisher, L. Silberman, Groups not acting on manifolds, Int.
Math. Res. Not. IMRN 2008, no. 16, Art. ID rnn060, 11 pp.
Le Thi Giang, The relative hyperbolicity of one-relator relative
presentations, J. Group Theory 12 (2009), no. 6, 949-959.
M. Hull, Small cancellation in acylindrically hyperbolic groups,
Groups Geom. Dyn. 10 (2016), no. 4, 1077–1119.
M. Hull, D. Osin, Conjugacy growth of finitely generated groups,
Adv. Math. 235 (2013), 361–389.
T. Januszkiewicz, P. Kropholler, I. Leary, Groups possessing
extensive hierarchical decompositions, Bull. Lond. Math. Soc. 42
(2010), no. 5, 896–904.
Y. Jiang, Maximal von Neumann subalgebras arising from maximal
subgroups, (2019), arXiv:1911.10483.
K. Khan, Fundamental groups of certain von Neumann algebras, PhD
thesis, (2020), Vanderbilt University.
Ant. A. Klyachko, SQ-universality of one-relator relative
presentations, Sb. Math. 197 (2006), no. 9-10, 1489-1508.
Ant. A. Klyachko, D. E. Lurye, Relative hyperbolicity and similar
properties of one-generator one-relator relative presentations with
powered unimodular relator, J. Pure Appl. Algebra 216 (2012), no. 3,
524–534.
D. Lee, Non-Hopfian SQ-universal groups, East Asian Math. J.Vol.
34 (2018), No. 5, pp. 587–595.
E. Martinez-Pedroza, On quasiconvexity and relatively hyperbolic
structures on groups, Geom. Dedicata 157 (2012), 269–290.
Y. Matsuda, O. Shin-ichi, On Cannon-Thurston maps for relatively
hyperbolic groups, J. Group Theory 17 (2014), no. 1, 41–47.
Y. Matsuda, O. Shin-ichi, Y. Saeko, The universal relatively
hyperbolic structure on a group and relative quasiconvexity for
subgroups, (2011), arXiv:1106.5288.
Y. Matsuda, O. Shin-ichi, Y. Saeko, C*-simplicity for groups with
non-elementary convergence group actions, Houston J. Math. 39
(2013), no. 4, 1291–1299.
M. Mihalik, E. Swenson, Relatively hyperbolic groups with semistable
fundamental group at infinity J. Topol. 14 (2021), no. 1, 39–61.
A. Minasyan, Groups with finitely many conjugacy classes and their
automorphisms, Comment. Math. Helv. 84 (2009), no. 2, 259-296.
A. Minasyan, D. Osin, Normal automorphisms of relatively hyperbolic
groups, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6079-6103.
A. Minasyan, D. Osin, Acylindrical hyperbolicity of groups acting on
trees, Math. Ann. 362 (2015), no. 3-4, 1055–1105.
A. Ol'shanskii, D. Osin, C*-simple groups without free subgroups,
Groups Geom. Dyn. 8 (2014), no. 3, 933–983.
A. Ol'shanskii, D. Osin, M. Sapir, Lacunary hyperbolic groups,
Geom. Topol. 13 (2009), no. 4, 2051-2140.
D. Osin, A topological zero-one law and elementary equivalence of
finitely generated groups, Ann. Pure Appl. Logic 172 (2021), no. 3,
102915, 36 pp.
D. Osin, Groups acting acylindrically on hyperbolic spaces,
(2017), arXiv:1712.00814.
D. Osin, Small cancellations over relatively hyperbolic groups and
embedding theorems, Annals of Mathematics, 172 (2010), 1-39.
D. Osin, On the universal theory of torsion and lacunary hyperbolic
groups, (2009), arXiv:0903.3978.
D. Osin, A. Thom, Normal generation and ℓ2-Betti numbers of groups,
Math. Ann. 355 (2013), no. 4, 1331–1347.
D. Witte Morris, Introduction to arithmetic groups, 2015. xii+475
pp.
M. M. Zhang, On properties of relatively hyperbolic groups, PhD
thesis, 2017, Carleton University.
[32] G.N. Arzhantseva and Z. Sunic,
Construction of elements in the closure of Grigorchuk group,
Geometriae Dedicata, 124(1) (2007), 17-26. pdf
4 citations by
M. Saltan, The relation between adding machne and p-adic integers,
Konuralp Journal of Mathematics, 1(2) (2013), 41-49.
B. Demir, M. Saltan, On p-adic integers and the adding machine group,
(2010), arXiv:1007.0366.
A. Penland, Nearly maximal Hausdorff dimension in finitely
constrained groups, (2017), arXiv:1710.05261.
O. Siegenthaler, Discrete and profinite groups acting on regular
rooted trees, PhD thesis, Georg-August-Universität Göttingen, 2009,
http://webdoc.sub.gwdg.de/diss/2010/siegenthaler/siegenthaler.pdf
[31] G.N. Arzhantseva, A. Minasyan,
Relatively hyperbolic groups are C*-simple,
Journal of Functional Analysis, 243(1) (2007), 345-351. pdf
19 citations by
C. R. Abbott, F. Dahmani, Property Pnaive for acylindrically
hyperbolic groups, Math. Z. 291 (2019), no. 1-2, 555–568.
C. Abbot, M. Hull, Random walks and quasi-convexity in acylindrically
hyperbolic groups, (2020), arXiv:1909.10876.
S.I. Adyan, V.S. Atabekyan, C*-simplicity of n-periodic products,
(Russian) ; translated from Mat. Zametki 99 (2016), no. 5, 643-648 Math.
Notes 99 (2016), no. 5-6, 631–635.
V.S. Atabekyan, The set of 2-generated C*-simple relatively free
groups has the cardinality of the continuum, Proceedings of the
Yerevan State University, Physical and Mathematical Sciences (2020),54(2),
p. 81–86.
F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups
and rotating families in groups acting on hyperbolic spaces, Mem.
Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
A. Fel'shtyn, E. Troitsky, Twisted conjugacy classes in residually
finite groups, (2012), arXiv:1204.3175.
R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional
graph manifolds, Astérisque No. 372 (2015), xxi+177 pp.
Sh. Gong, Property RD and the classification of traces on reduced
group C*-algebras of hyperbolic groups, J. Topol. Anal. 9 (2017),
no. 4, 707–716.
P. de la Harpe, On simplicity of reduced C*-algebras of groups,
Bull. Lond. Math. Soc. 39 (2007), no. 1, 1-26.
Sh. Hejazian, S. Pooya, Simple reduced Lp-operator crossed products
with unique trace, J. Operator Theory 74 (2015), no. 1, 133–147.
A. Kar, M. Sageev, Ping pong on CAT(0) cube complexes, Comment.
Math. Helv. 91 (2016), no. 3, 543–561.
A. Le Boudec, C*-simplicity and the amenable radical, Invent.
Math. 209 (2017), no. 1, 159–174.
A. Le Boudec, Groups of automorphisms and almostautomorphisms of
trees: subgroups anddynamics, (2016), Lecture notes,
https://www.matrix-inst.org.au/wp_Matrix2016/wp-content/uploads/2017/08/LeBoudec.pdf.
M. Kalantar, M. Kennedy, Boundaries of reduced
C*-algebras of discrete groups, (2014), arXiv:1405.4359.
E. Martínez-Pedroza, Combination of quasiconvex subgroups of
relatively hyperbolic groups, Groups Geom. Dyn. 3 (2009), no. 2,
317-342.
E. Martinez-Pedroza, On quasiconvexity and relatively hyperbolic
structures on groups, Geom. Dedicata 157 (2012), 269–290.
Y. Matsuda, S. Oguni, S. Yamagata, C*-simplicity for groups with
non-elementary convergence group actions, Houston J. Math. 39
(2013), no. 4, 1291–1299.
A. Yu. Olshanskii, D. V. Osin, C*-simple groups without free
subgroups, Groups Geom. Dyn. 8 (2014), no. 3, 933–983.
R. D. Tucker-Drob, Shift-minimal groups, fixed price 1, and the
unique trace property, (2012), arXiv:1211.6395.
[30] G.N. Arzhantseva, P. de la Harpe, D.
Kahrobaei, The true prosoluble completion of a group: Examples and
open problems,,
Geometriae Dedicata, 124(1) (2007), 5-17. pdf
12 citations by
F. Berlai, Residual properties of free products, Comm. Algebra 44
(2016), no. 7, 2959–2980.
K. Bencsath, A. Douglas, D. Kahrobaei, Some residually solvable
one-relator groups, Irish Math. Soc. Bulletin 65 (2010), 23-31.
S. Friedl, S.Vidussi, Twisted Alexander polynomials detect fibered
3-manifolds, Ann. of Math. (2) 173 (2011), no. 3, 1587–1643.
S. Friedl, S. Vidussi, Twisted Alexander polynomials and fibered
3-manifolds. Low-dimensional and symplectic topology, 111–130, Proc.
Sympos. Pure Math., 82, Amer. Math. Soc., Providence, RI, 2011.
D. Kahrobaei, Doubles of residually solvable groups in B. Fine,
G. Rosenberger, D. Spellman (eds), Aspects of Infinite Group Theory,
Algebra and Discrete Mathematics, World Scientific, 1 (2008), 192-200.
D. Kahrobaei, On the residual solvability of generalized free
products of finitely generated nilpotent groups, Comm. Algebra 39
(2011), no. 2, 647–656.
D. Kahrobaei, A. F. Douglas, K. Bencsáth, Some residually solvable
one-relator groups, (2013), arXiv:1310.5241.
D. Kahrobaei, S. Majewicz, On the residual solvability of generalized
free products of solvable groups, Discrete Math. Theor. Comput. Sci.
13 (2011), no. 4, 45–50.
Yu. Leonov, On the closure of the first Grigorchuk group,
(Russian); translated from Ukr. Mat. Visn. 7 (2010), no. 1, 39--48, 135 J.
Math. Sci. (N.Y.) 173 (2011), no. 4, 371–377.
G. Mantika, D. Tieudjo, On the group of continuous automorphisms of
some profinite groups, Lobachevskii J. Math. 39 (2018), no. 2,
243–251.
O. Siegenthaler, A. Zugadi-Reizabal, The equations satisfied by
GGS-groups and the abelian group structure of the Gupta-Sidki group,
European J. Combin. 33 (2012), no. 7, 1672–1690.
O. Siegenthaler, Discrete and profinite groups acting on regular
rooted trees, PhD thesis, Georg-August-Universität Göttingen, 2009,
http://webdoc.sub.gwdg.de/diss/2010/siegenthaler/siegenthaler.pdf.
[29] G.N. Arzhantseva, V.S. Guba, M.V.
Sapir, Metrics on diagram groups and uniform embeddings in a
Hilbert space,,
Commentarii Mathematici Helvetici, 81(4) (2006), 911-929. pdf
47 citations by
C. Anantharaman-Delaroche, Amenability and exactness for groups,
group actions and operator algebras, (2007),
http://www.univ-orleans.fr/mapmo/membres/anantharaman/publications/ESI07.pdf.
T. Austin, A finitely-generated amenable group with very
poor compression into Lebesgue spaces, (2009), arXiv:0909.2047.
T. Austin, A. Naor, Y. Peres, The wreath product of Z with Z has
Hilbert compression exponent 2/3, Proc. Amer. Math. Soc. 137 (2009),
no. 1, 85-90.
T. Austin, Amenable groups with very poor compression into Lebesgue
spaces, Duke Math. J. 159 (2011), no. 2, 187–222.
J.-C. Birget, One-way permutations, computational asymmetry and
distortion, J. Algebra 320 (2008), no. 11, 4030-4062.
J. Brieussel, T. Zheng, Speed of random walks, isoperimetry and
compression of finitely generated groups, Ann. of Math. (2) 193
(2021), no. 1, 1–105.
N. Brodskiy, D. Sonkin, Compression of uniform embeddings into
Hilbert space, Topology Appl. 155 (2008), no. 7, 725-732.
N. Brown, E. Guentner, New C*-completions of discrete groups and
related spaces, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1181–1193.
S. J. Campbell, Property A and affine buildings, J. Funct. Anal.
256 (2009), no. 2, 409-431.
Ch. Cave, D. Dreesen, Equivariant compression of certain direct limit
groups and amalgamated free products, Glasg. Math. J. 58 (2016), no.
3, 739–752.
Y. de Cornulier, Y. Stalder, A. Valette, Proper actions of wreath
products and generalizations, Trans. Amer. Math. Soc. 364 (2012),
no. 6, 3159–3184.
C. le Coz, A. Gournay, Separation profiles, isoperimetry, growth and
compression, (2019), arXiv:1910.11733.
A. Dranishnikov, M. Sapir, On the dimension growth of groups, J.
Algebra 347 (2011), 23–39.
D. Dreesen, Hilbert space compression under direct limits and certain
group extensions, Proc. Amer. Math. Soc. 141 (2013), no. 2, 421–436.
A. Eskenazis, Geometric inequalities and advances in the Ribe program,
PhD thesis, 2019, Princeton University.
S. Gal, Asymptotic dimension and uniform embeddings, Groups Geom.
Dyn. 2 (2008), no. 1, 63-84.
A. Genevois, Lamplighter groups, median spaces, and Hilbertian
geometry, (2017), arXiv:1705.00834.
A. Genevois, Hyperplanes of Squier's cube complexes, Algebr.
Geom. Topol. 18 (2018), no. 6, 3205–3256.
A. Genevois, Embeddings into Thompson's groups from quasi-median
geometry, Groups Geom. Dyn. 13 (2019), no. 4, 1457–1510.
A. Genevois, Cubical-like geometry of quasi-median graphs and
applications to geometric group theory, (2017), arXiv:1712.01618.
A. Genevois, R. Tessera, Asymptotic geometry of lamplighters over
one-ended groups, (2021), arXiv:2105.04878.
R. Gray, A. Malheiro, S. Pride, Homotopy bases and finite derivation
type for Schützenberger groups of monoids, J. Symbolic Comput. 50
(2013), 50–78.
R. Gray, A. Malheiro, S. Pride, On properties not inherited by
monoids from their Schützenberger groups, Inform. and Comput. 209
(2011), no. 7, 1120–1134.
G. Golan, M. Sapir, On the stabilizers of finite sets of numbers in
the R. Thompson group F, Algebra i Analiz 29 (2017), no. 1, 70–110;
A. Gournay, The Liouville property and Hilbertian compression,
Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2435–2454.
V. Guba, M. Sapir, Diagram groups and directed 2-complexes: homotopy
and homology, J. Pure Appl. Algebra 205 (2006), no. 1, 1-47.
V. Guba, M. Sapir, On the conjugacy growth functions of groups,
Illinois J. Math. 54 (2010), no. 1, 301–313.
U. Haagerup, G. Picioroaga, New presentations of Thompson's groups
and applications, J. Operator Theory 66 (2011), no. 1, 217–232.
P.-N. Jolissaint, Embeddings of groups into Banach spaces, PhD
thesis, 2015, University of Neuchatel.
V. Kaimanovich, Thompson's group F is not Liouville, Groups,
Graphs and Random Walks, London Mathematical Society Lecture Note Series,
300-342, 2017.
E. Kirchberg, A. Sierakowski, Strong pure infiniteness of crossed
products, Ergodic Theory Dynam. Systems 38 (2018), no. 1, 220–243.
S. Li, Compression bounds for wreath products, Proc. Amer. Math.
Soc. 138 (2010), no. 8, 2701-2714.
A. Naor, Y. Peres, Lp compression, traveling salesmen, and stable
walks, Duke Math. J. 157 (2011), no. 1, 53–108.
A. Naor, Y. Peres, Embeddings of discrete groups and the speed of
random walks, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 076, 34
pp.
P. Nowak, On exactness and isoperimetric profiles of discrete groups,
J. Funct. Anal. 243 (2007), no. 1, 323-344.
P. Nowak, G. Yu, Large-scale geometry, (2010), EMS publishing
house, to appear,
http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf.
A. Olshanskii, D. Osin, A quasi-isometric embedding theorem for
groups, Duke Math. J. 162 (2013), no. 9, 1621–1648.
S. Passidis, A. Weston, Manifestations of non linear roundness in
analysis, discrete geometry and topology, in Limits of graphs in
group theory and computer science by G. Arzhantseva, A.Valette (eds.),
EPFL press, 2009.
S. Pride, Universal diagram groups with identical Poincaré series,
Groups Geom. Dyn. 4 (2010), no. 4, 901–908.
D.-T. Salajan, CAT(0) geometry for The Thompson Group, (2012),
arXiv:1203.5749.
A. Sale, Metric behaviour of the Magnus embedding, Geom. Dedicata
176 (2015), 305–313.
M. Sapir, Some group theory problems, Internat. J. Algebra
Comput. 17 (2007), no. 5-6, 1189-1214.
Y. Stalder, A. Valette, Wreath products with the integers, proper
actions and Hilbert space compression, Geom. Dedicata 124 (2007),
199-211.
R. Tessera, Quantitative property A, Poincaré inequalities,
Lp-compression and Lp-distortion for metric measure spaces, Geom.
Dedicata 136 (2008), 203-220.
R. Tessera, Asymptotic isoperimetry on groups and uniform embeddings
into Banach spaces, Comment. Math. Helv. 86 (2011), no. 3, 499–535.
G. Yu, Higher index theory of elliptic operators and geometry of
groups, International Congress of Mathematicians. Vol. II,
1623-1639, Eur. Math. Soc., Zürich, 2006.
J. Brieussel, T. Zheng, Speed of random walks, isoperimetry and
compression of finitely generated groups, (2015), Ann. of Math. (2)
193 (2021), no. 1, 1-105.
[28] G.N. Arzhantseva, A dichotomy for
finitely generated subgroups of word hyperbolic groups,,
Contemporary Mathematics, 394, Amer. Math.Soc., Providence, RI, 2006,
1-11. pdf
11 citations by
A. Bartels, W. Lück, The Borel conjecture for hyperbolic and
CAT(0)-groups, Ann. of Math. (2) 175 (2012), no. 2, 631–689.
M. Belolipetsky, On 2-systoles of hyperbolic 3-manifolds, Geom.
Funct. Anal. 23 (2013), no. 3, 813–827.
R. Coulon, Asphericity and small cancellation theory for rotation
families of groups, Groups Geom. Dyn. 5 (2011), no. 4, 729–765.
M. Gromov, Singularities, expanders and topology of maps. I. Homology
versus volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009),
no. 3, 743-841.
D. Hume, Direct embeddings of relatively hyperbolic groups with
optimal ℓp compression exponent, J. Reine Angew. Math. 703 (2015),
147–172.
I. Kapovich, P. Schupp, Random quotients of the modular group are
rigid and essentially incompressible, J. Reine Angew. Math. 628
(2009), 91-119.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups, Math.
Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, R. Weidmann, Nielsen methods and groups acting on
hyperbolic spaces, Geom. Dedicata 98 (2003), 95-121.
T. Koberda, Entropy of automorphisms, homology and the intrinsic
polynomial structure of nilpotent groups, In the tradition of
Ahlfors-Bers. VI, 87–99, Contemp. Math., 590, Amer. Math. Soc.,
Providence, RI, 2013.
A. Kvaschuk, One variable equations in torsion-free hyperbolic groups,
PhD thesis, 2003, University of New York.
H. Reza Rostami, About groups with property (U), Armenian journal of
mathematics, 3(1) (2008), 14-22.
[27] G.N. Arzhantseva and I.G. Lysenok,
A lower bound on the growth of word hyperbolic groups,,
Journal of the London Mathematical Society, (2) 73 (2006), 109-125.
pdf
14 citations by
E. Breuillard, K. Fujiwara, On the joint spectral radius for
isometries of non-positively curved spaces and uniform growth ,
Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 317-391.
J. Button, Non proper HNN extensions and uniform uniform exponential
growth, (2009), arXiv.org:0909.2841.
N. Cavalluchi, Packing conditions in metric spaces with
curvaturebounded above and applications, PhD thesis, 2020, Universià
di Roma.
N. Cavallucci, A. Sambusetti, Discrete groups of packed,
non-positively curved, Gromov hyperbolic metric spaces, (2021),
arXiv:2102.09829.
F. Cerocchi, A. Sambusetti, Entropy and finiteness of groups with
acylindrical splittings, (2017), arXiv:1711.06210.
R. Coulon, M. Steenbock, Product set growth in Burnside groups,
(2021), arXiv:2102.10885.
Y. Cui, Y. Jiang, W. Yang, Lower bound on growth of non-elementary
subgroups in relatively hyperbolic groups, 2021, arXiv:2103.02304.
T. Delzant, M. Steenbock, Product set growth in groups and hyperbolic
geometry, J. Topol. 13 (2020), no. 3, 1183–1215.
D. Dikranjan, A. Giordano Bruno, Topological entropy and algebraic
entropy for group endomorphisms, (2013), arXiv:1308.4019.
K. Fujiwara, The rates of growth in an acylindrically hyperbolic
group, (2021), arXiv:2103.01430.
K. Fujiwara, Z. Sela, The rates of growth in a hyperbolic group,
(2020), arXiv:2002.10278.
L. Ji, A tale of two groups: arithmetic groups and mapping class
groups, Handbook of Teichmüller theory. Volume III, 157–295, IRMA
Lect. Math. Theor. Phys., 17, Eur. Math. Soc., Zürich, 2012.
R. Kropholler, R. Alanza Lyman, T. Ng, Extensions of hyperbolic
groups have locally uniform exponential growth, 2020,
arXiv:2012.14880.
F. Zuddas, Some finiteness results for groups with bounded algebraic
entropy, Geom. Dedicata (2009), 49-62.
[26] G.N. Arzhantseva, V.S. Guba, L. Guyot,
Growth rates of amenable groups,,
Journal of Group Theory, 8 (2005), no.3, 389-394. pdf
5 citations by
I. Benjamini, T. Gelander, An upper bound on the growth of Dirichlet
tilings of hyperbolic spaces, J. Topol. Anal. 9 (2017), no. 2,
221–224.
V. Capraro, Amenability, locally finite spaces, and bi-Lipschitz
embeddings, Expo. Math. 31 (2013), no. 4, 334–349.
V. Capraro, Topology on locally finite metric spaces, (2011),
arXiv:1111.0268.
T. Ceccherini-Silberstein, R. I. Grigorchuk, P. de la Harpe,
Amenability and paradoxical decompositions for pseudogroups and for
discrete metric spaces, (2016), arXiv:1603.04212.
V. Guba, Strict dead-end elements in free soluble groups, Comm.
Algebra 36 (2008), no. 5, 1988–1997.
[25] G.N. Arzhantseva, J. Burillo, M.
Lustig, L. Reeves, H. Short, E. Ventura, Uniform non-amenability,
Advances in Mathematics, 197 (2005), no. 2, 499-522. pdf
34 citations by
S.I. Adyan, V.S. Atabekyan, Characteristic properties and uniform
non-amenability of n-periodic products of groups, (Russian) ;
translated from Izv. Ross. Akad. Nauk Ser. Mat. 79 (2015), no. 6, 3--17
Izv. Math. 79 (2015), no. 6, 1097–1110.
Y. Amirou, Elements of uniformly bounded word-length in groups,
(2018), arXiv:1811.11464.
J. Anderson, J. Aramayona, K.J. Shackleton, Amenability and
non-uniform growth of some directed automorphism groups of a rooted
tree, Uniformly exponential growth and mapping class groups of surfaces,
In the tradition of Ahlfors-Bers. IV, 1-6, Contemp. Math., 432, Amer.
Math. Soc., Providence, RI, 2007.
V. Atabekyan, Uniform nonamenability of subgroups of free Burnside
groups of odd period, Math. Notes, 85 (4) (2009), 496-502.
V. Atabekyan, On monomorphisms of free Burnside groups, (Russian)
; translated from Mat. Zametki 86 (2009), no. 4, 483-490 Math. Notes 86
(2009), no. 3-4, 457–462.
J. Bannon, M. Ravichandran, A Følner invariant for type II1 factors,
Expo. Math. 25 (2007), no. 2, 117-130.
L. Bartholdi, A. Erschler, Ordering the space of finitely generated
groups, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 2091–2144.
E. Breuillard, K. Fujiwara, On the joint spectral radius for
isometries of non-positively curved spaces and uniform growth,
Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 317-391.
E. Breuillard, T. Gelander, Uniform independence in linear groups,
Invent. Math. 173 (2008), no. 2, 225-263.
E. Breuillard, T. Gelander, Cheeger constant and algebraic entropy of
linear groups, Int. Math. Res. Not. (2005), no. 56, 3511-3523.
E. Breuillard, B. Green, T. Tao, A note on approximate subgroups of
GL_n(C) and uniformly nonamenable groups, (2011), arXiv:1101.2552.
N. Brown, N. Ozawa, C*-algebras and finite-dimensional approximations,
Graduate Studies in Mathematics, 88. American Mathematical Society,
Providence, RI, 2008. xvi+509 pp.
J. Burillo, Grups i la paradoxa de Banach-Tarski, Butlletí de la
Societat Catalana de Matemàtiques,Vol. 23, núm. 2, 2008. Pàg. 181-199.
Y. de Cornulier, L. Guyot, W. Pitsch, On the isolated points in the
space of groups, J. Algebra 307 (2007), no. 1, 254-277.
Y. de Cornulier, L. Guyot. W. Pitsch, The space of subgroups of an
abelian group, (2008), arXiv:0811.1549.
M. Ershov, Kazhdan quotients of Golod-Shafarevich groups. Proc.
Lond. Math. Soc. (3) 102 (2011), no. 4, 599–636.
M. Ershov, A. Jaikin-Zapirain, Kazhdan quotients of Golod-Shafarevich
groups, (2009), arXiv:0908.3734.
L. Guyot, Y. Stalder, Limits of Baumslag-Solitar groups and dimension
estimates in the space of marked groups, Groups Geom. Dyn. 6 (2012),
no. 3, 533–577.
R. Ji, C. Ogle, B. Ramsey, Relative amenability and relative soficity,
(2018), arXiv:1807.07600.
I. J. Leary, A. Minasyan, Commensurating HNN-extensions: non-positive
curvature and biautomaticity, (2019), arXiv:1907.03515.
R. Lyons, M. Pichot, S. Vassout, Uniform non-amenability, cost, and
the first l2-Betti number, Groups Geom. Dyn. 2 (2008), no. 4,
595-617.
A. Malyshev, Non-amenability of product replacement graphs,
(2013), arXiv:1305.2408.
A. Malyshev, Combinatorics of finitely generated groups, (2014),
PhD thesis, UCLA.
A. Malyshev, I. Pak, Growth in product replacement graphs of
Grigorchuk groups, J. Group Theory 18 (2015), no. 2, 209–234.
A. Minasyan, D. Osin, Acylindrically hyperbolic groups with exotic
properties, J. Algebra 522 (2019), 218–235.
P. Nowak, Isoperimetry of group actions, Adv. Math. 219 (2008),
no. 1, 1-26.
A.Yu. Olshanskii, M.V. Sapir, On k-free-like groups, Algebra and
Logic 48 (2) (2009), 245-257.
D. Osin, Uniform non-amenability of free Burnside groups, Arch.
Math. (Basel) 88 (2007), no. 5, 403-412.
D. Osin, L2-Betti numbers and non-unitarizable groups without free
subgroups, Int. Math. Res. Not. IMRN2009, no. 22, 4220-4231.
G. Pete, Probability and geometry on groups. Lecture notes for a
graduate course, (2017),
https://math.bme.hu/~gabor/PGG.pdf.
L. L. Pham, Uniform Kazhdan constants and paradoxes of the affine
plane, Transformation Groups (2020).
M. Pichot, Semi-continuity of the first l2-Betti number on the space
of finitely generated groups, Comment. Math. Helv. 81 (2006), no. 3,
643-652.
Y. Stalder, Convergence of Baumslag-Solitar groups, Bull. Belg.
Math. Soc. Simon Stevin 13 (2006), no. 2, 221-233.
R. Willett, Property A and graphs with large girth, J. Topol.
Anal. 3 (2011), no. 3, 377–384.
[24] G.N. Arzhantseva and P.-A. Cherix,
On the Cayley graph of a generic finitely presented group,
Bulletin of the Belgian Mathematical Society, 11 (2004), no. 4, 589-601.
pdf
18 citations by
T. G. Ceccherini-Silberstein, A. Y. Samet-Vaillant, Asymptotic
invariants of finitely generated algebras. A generalization of Gromov's
quasi-isometric viewpoint, Journal of Mathematical Sciences, 156 (1)
(2009), 56-108.
P. Dani, I. Levcovitz, Subgroups of right-angled Coxeter groups via
Stallings-like techniques, (2019), arXiv:1908.09046.
B. Federici, Interactions between large-scale invariants ininfinite
graphs, PhD thesis, 2017, University of Warwick.
E. Frenkel, A. Myasnikov, V. Remeslennikov, Amalgamated products of
groups II: measures of random normal forms, Journal of Mathematical
Sciences volume 185 (2012), 300–320.
A. Georgakopoulos, On planar Cayley graphs and Kleinian groups
Trans. Amer. Math. Soc. 373 (2020), no. 7, 4649–4684.
A. Georgakopoulos, M. Hamann, The planar Cayley graphs are
effectively enumerable I: Consistently planar graphs, Combinatorica
39 (2019), no. 5, 993–1019.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in free
groups, Groups Complex. Cryptol. 3 (2011), no. 2, 257–284.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent
groups, J. Algebra 352 (2012), 192–214.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and
genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
Y. Kemper, Problems of enumeration and realizability on matroids,
simplicial complexes, and graphs, (2013), PhD thesis, U Calirfornia
Davis.
A. Khukhro, A characterisation of virtually free groups via minor
exclusion, (2020), arXiv:2006.16918.
J. de Loera, Y. Kemper, Polyhedral embeddings of Cayley graphs,
Electronic Notes in Discrete Mathematics 43 (2013), 279-288.
A. Myasnikov, V. Remeslennikov, E. Frenkel′, Free products of groups
with amalgamation: stratification of sets of normal forms and estimates,
(Russian) ; translated from Fundam. Prikl. Mat. 16 (2010), no. 8, 189-221
J. Math. Sci. (N.Y.) 185 (2012), no. 2, 300–320.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro,
2005. ii+100 pp.
Y. Ollivier, Le Hasard et la Courbur, Habilitation thesis, 2009,
École normale supérieure de Lyon.
Y. Ollivier, Sharp phase transition theorems for hyperbolicity,
Geom. Funct. Anal. 14 (2004), no. 3, 595—679.
M. Ostrovskii, D. Rosenthal, Metric dimensions of minor excluded
graphs and minor exclusion in groups, Internat. J. Algebra Comput.
25 (2015), no. 4, 541–554.
O. Varghese, Planarity of Cayley graphs of graph products of groups,
Discrete Math. 342 (2019), no. 6, 1812–1819.
[23] G.N. Arzhantseva and I.G. Lysenok,
Growth tightness for word hyperbolic groups,
Mathematische Zeitschrift, 241 (2002), no. 3, 597-611. pdf
35 citations by
L. Bartholdi, R. Grigorchuk, V. Nekrashevych, From fractal groups to
fractal sets, Fractals in Graz 2001, 25-118,Trends Math.,
Birkhäuser, Basel, 2003.
Ch. Cashen, J. Tao, Growth tight actions of product groups,
Groups Geom. Dyn. 10 (2016), no. 2, 753–770.
S. Cantrell, R. Tanaka, The Manhattan curve, ergodic theory of
topological flows and rigidity, (2021), arXiv:2104.13451.
T. Ceccherini-Silberstein, F. Scarabotti, Random walks, entropy and
hopfianity of free groups, Random walks and geometry, 413-419,
Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
T. Ceccherini-Silberstein, W. Woess, Growth and ergodicity of
context-free languages, Trans. Amer. Math. Soc. 354 (2002), no. 11,
4597-4625.
V. Chaynikov, Actions of maximal growth of hyperbolic groups,
(2012), arXiv:1201.1349.
R. Coulon, Growth of periodic quotients of hyperbolic groups,
Algebr. Geom. Topol. 13 (2013), no. 6, 3111–3133.
F. Dal’bo, M. Peigné, J.-C. Picaud, A. Sambusetti, On the growth of
quotients of Kleinian groups, Ergodic Theory Dynam. Systems 31
(2011), no. 3, 835–851.
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups,
Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505–530.
A. Erschler, Growth rates of small cancellation groups, Random walks
and geometry,421-430, Walter de Gruyter GmbH & Co. KG, Berlin,
2004.
K. Fujiwara, Z. Sela, The rates of growth in a hyperbolic group,
(2020), arXiv:2002.10278.
I. Gekhtman, S. J. Taylor, G. Tiozzo, Counting problems in graph
products and relatively hyperbolic groups, Israel J. Math. 237
(2020), no. 1, 311–371.
I. Gekhtman, S. J. Taylor, G. Tiozzo, Central limit theorems for
counting measures in coarse negative curvature, (2020),
arXiv:2004.13084.
S. Gouezel , F. Matheus, F. Maucourant, Entropy and drift in word
hyperbolic groups, Invent. Math. 211 (2018), no. 3, 1201–1255.
P. de la Harpe, Uniform growth in groups of exponential growth,
Geom. Dedicata 95 (2002), 1-17.
P. de la Harpe, Topics in geometric group theory, Chicago
Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.
vi+310 pp.
Z. He, J. Liu, W. Yang, Large quotients of group actions with a
contracting element, (2020), arXiv:2007.15825.
W. Huss, E. Sava, W. Woess, Entropy sensitivity of languages defined
by infinite automata, via Markov chains with forbidden transitions,
Theoret. Comput. Sci. 411 (2010), no. 44-46, 3917–3922.
J. Jaerisch, K. Matsuzaki, Growth and cogrowth of normal subgroups of
a free group, Proc. Amer. Math. Soc. 145 (2017), no. 10, 4141–4149.
K. Matsuzaki, Growth and cogrowth tightnessof Kleinian and hyperbolic
groups, RIMS Kôkyûroku Bessatsu B66 (2017), 021-036.
B. Mramor, Minimisers of the Allen-Cahn equation and the asymptotic
Plateau problem on hyperbolic groups, Ann. Inst. H. Poincaré Anal.
Non Linéaire 35 (2018), no. 3, 687–711.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.
Y. Ollivier, Growth exponent of generic groups, Comment. Math.
Helv. 81 (2006), no. 3, 569-593.
S. Sabourau, Growth of quotients of groups acting by isometries on
Gromov-hyperbolic spaces, J. Mod. Dyn. 7 (2013), no. 2, 269–290.
A. Sambusetti, Asymptotic properties of coverings in negative
curvature, Geom. Topol. 12 (2008), no. 1, 617-637.
A. Sambusetti, Growth tightness of negatively curved manifolds,
C. R. Math. Acad. Sci. Paris 336 (2003), no. 6, 487-491.
A. Sambusetti, Growth tightness of surface groups, Expo. Math. 20
(2002), no. 4, 345-363.
A. Sambusetti, Growth tightness in group theory and Riemannian
geometry, in "Recent Advances in Geometry and Topology,'' Cluj Univ.
Press, Cluj-Napoca, (2004), 341-352.
E. Sava, Lamplighter random walks and entropy-sensetivity of
languages, PhD thesis, 2010, TU Graz.
A. Talambutsa, Attainability of the index of exponential growth in
free products of cyclic groups, Math. Notes 78 (2005), no. 3-4,
569-572.
W. Yang, Growth tightness for groups with contracting elements,
Math. Proc. Cambridge Philos. Soc. 157 (2014), no. 2, 297–319.
W. Yang, Patterson-Sullivan measures and growth of relatively
hyperbolic groups, Peking Mathematical Journal (2021).
W. Yang, Growth tightness of groups with nontrivial Floyd boundary,
(2013), arXiv:1301.5623v1.
W. Yang, Statistically convex-cocompact actions of groups with
contracting elements, (2016), Int. Math. Res. Not. IMRN 2019, no.
23, 7259–7323.
W. Yang, Purely exponential growth of cusp-uniform actions,
Ergodic Theory Dynam. Systems 39 (2019), no. 3, 795–831.
[22] G.N. Arzhantseva and D.V. Osin,
Solvable groups with polynomial Dehn functions,
Transactions of the American Mathematical Society, 354 (2002),
3329-3348. pdf
17 citations by
M. Anshel, D. Kahrobaei, Decision and search in non-abelian Cramer
Shoup public key cryptosystem, (2013), arXiv:1309.4519.
N. Brady, W. Dison, T. Riley, Hyperbolic hydra, Groups Geom. Dyn.
7 (2013), no. 4, 961–976.
N. Broaddus, B. Farb, A. Putman, Irreducible Sp-representations and
subgroup distortion in the mapping class group, Comment. Math. Helv.
86 (2011), no. 3, 537–556.
M. Cavaleri, Computability of Folner sets, (2016), Internat. J.
Algebra Comput. 27 (2017), no. 7, 819–830.
S. Cleary, C. Martínez-Pérez, Undistorted embeddings of metabelian
groups of finite Prüfer rank, New York J. Math. 21 (2015),
1027–1053.
Y. de Cornulier, Aspects de la géométrie des groupes,
Habilitation thesis, (2014), University of Paris-Sud 11.
Y. de Cornulier, R. Tessera, Metabelian groups with quadratic Dehn
function and Baumslag-Solitar groups, Confluentes Math. 2 (2010),
no. 4, 431–443.
P. Davidson, Geometric methods in the study of Pride groups and
relative presentations, (2008), PhD thesis, University of Glasgow. http://theses.gla.ac.uk/230/01/2008davidsonphd.pdf.
W. Dison, T.R. Riley, Hydra groups, Comment. Math.
Helv. 88 (2013), no. 3, 507–540.
C. Drutu, Filling in solvable groups and in lattices in semisimple
groups, Topology 43 (2004), no. 5, 983-1033.
R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional
graph manifolds, Astérisque No. 372 (2015), xxi+177 pp.
R. Ji, C. Ogle, B. Ramsey, B-bounded cohomology and applications.,Internat.
J. Algebra Comput. 23 (2013), no. 1, 147–204.
D. Kahrobaei, M. Anshel, Decision and search in non-abelian
Cramer-Shoup public key cryptosystem, Groups Complex. Cryptol. 1
(2009), no. 2, 217–225.
M. Kassabov, T. Riley, The Dehn function of Baumslag's metabelian
group, Geom. Dedicata 158 (2012), 109–119.
E. Leuzinger, Ch. Pittet, On quadratic Dehn functions, Math. Z.
248 (2004), no. 4, 725-755.
R. Tessera, The large-scale geometry of locally compact solvable
groups, Internat. J. Algebra Comput. 26 (2016), no. 2, 249–281.
W. Wang, Dehn functions of finitely presented metabelian groups,
J. Group Theory, in press.
[21] G.N. Arzhantseva, On quasiconvex
subgroups of word hyperbolic groups,
Geometriae Dedicata, 87 (2001), 191-208. pdf
30 citations by
C. Abbot, M. Hull, Random walks and quasi-convexity in acylindrically
hyperbolic groups, (2020), arXiv:1909.10876.
V. Chaynikov, Actions of maximal growth of hyperbolic groups,
(2012), arXiv:1201.1349.
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups,
Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 3, 505–530.
T. Delzant, M. Gromov, Cuts in Kähler groups, infinite groups:
geometric, combinatorial and dynamical aspects, 31-55, Progr. Math.,
248, Birkhäuser, Basel, 2005.
F. Dudkin, K. Sviridov, Complementing a subgroup of a hyperbolic
group by a free factor, (Russian) ; translated from Algebra Logika
52 (2013), no. 3, 332-351, 395, 398 Algebra Logic 52 (2013), no. 3,
222–235.
B. Farb, L. Mosher, Convex cocompact subgroups of mapping class
groups, Geom. Topol. 6 (2002), 91-152 (electronic).
S. Friedl, D. Silver, S. Williams, Splittings of knot groups,
Math. Ann. 362 (2015), no. 1-2, 401–424.
A. Genevois, Cubical-like geometry of quasi-median graphs and
applications to geometric group theory, (2017), arXiv:1712.01618.
R. Gitik, On intersection of conjugate subgoups, Internat. J.
Algebra Comput. 27 (2017), no. 4, 403–419.
Y. Glasner, J. Souto, P. Storm, Normal complements to hyperbolic
subgroup, (2009), preprint.
https://www.math.bgu.ac.il/~yairgl/Hyp_qc.pdf.
P. de la Harpe, Topics in geometric group theory, Chicago
Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.
vi+310 pp.
S. Hersonsky, F. Paulin, On the almost sure spiraling of geodesics in
negatively curved manifolds, J. Differential Geom. 85 (2010), no. 2,
271–314.
E. Jabara, Groups that are the union of a finite number of double
cosets, Rend. Sem. Mat. Univ. Padova 116 (2006), 41-53.
I. Kapovich, R. Weidmann, Kleinian groups and the rank problem,
Geom. Topol. 9 (2005), 375-402.
I. Kapovich, The Frattini subgroups of subgroups of hyperbolic groups,
J. Group Theory 6 (2003), no. 1, 115-126.
I. Kapovich, The non-amenability of Schreier graphs for infinite
index quasiconvex subgroups of hyperbolic groups, Enseign. Math. (2)
48 (2002), no. 3-4, 359-375.
I. Kapovich, The geometry of relative Cayley graphs for subgroups of
hyperbolic groups, (2002), arXiv:math/0201045.
A. Kar, M. Sageev, Ping pong on CAT(0) cube complexes, Comment.
Math. Helv. 91 (2016), no. 3, 543–561.
O. Kharlampovich, A. Vdovina, Linear estimates for solutions of
quadratic equations in free groups, Internat. J. Algebra Comput. 22
(2012), no. 1, 1250004, 16 pp.
O. Kharlampovich, A. Mohajeri, A. Taam, A. Vdovina, Quadratic
Equations in hyperbolic groups are NP-complete, Trans. Amer. Math.
Soc. 369 (2017), no. 9, 6207–6238.
E. Martínez-Pedroza, Combination of quasiconvex subgroups of
relatively hyperbolic groups, Groups Geom. Dyn. 3 (2009), no. 2,
317-342.
A. Minasyan, Some properties of subsets of hyperbolic groups,
Comm. Algebra 33 (2005), no. 3, 909-935.
A. Minasyan, On products of quasiconvex subgroups in hyperbolic
groups, Internat. J. Algebra Comput. 14 (2004), no. 2, 173-195.
A. Minasyan, On quasiconvex subsets of hyperbolic groups, (2005),
PhD thesis, Vanderbilt University.
M. Ostrovskii, Metric characterizations of superreflexivity in terms
of word hyperbolic groups and finite graphs, Anal. Geom. Metr.
Spaces 2 (2014), no. 1, 154–168.
J. Russell, D. Spriano, H.C. Tran, Convexity in hierarchically
hyperbolic spaces, (2018), arXiv:1809.09303.
J. Russell, D. Spriano, H.C. Tran, The local-to-global property for
Morse quasi-geodesics, (2019), arXiv:1908.11292.
A. Vonseel, Hyperbolicité et bouts des graphes de Schreier, PhD
thesis, 2017, Université de Strasbourg.
D. Wise, From riches to raags: 3-manifolds, right-angled Artin
groups, and cubical geometry, CBMS Regional Conference Series in
Mathematics, 117. Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society,
Providence, RI, 2012. xiv+141 pp.
D. Wise, The structure of groups with a quasiconvex hierarchy,
Annals of Mathematics Studies 209, Princeton University Press, Princeton,
2021, 376pp.
[20] G.N. Arzhantseva, A property of
subgroups of infinite index in a free group,
Proceedings of the American Mathematical Society, 128 (11) (2000),
3205-3210. pdf
31 citations by
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, Statistical
properties of subgroups of free groups, Random Structures Algorithms
42 (2013), no. 3, 349–373.
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, On two
distributions of subgroups of free groups, Proceedings of the
Seventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
82–89, SIAM, Philadelphia, PA, 2010.
F. Bassino, A. Martino, C. Nicaud, P. Weil, Random presentations and
random subgroups: a survey, (2017), arXiv:1702.01942.
F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev,
I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, Complexity and
Randomness in Group Theory: GAGTA book 1, De Gruyter, 2020, xii+374
pp.
H. Bigdely, A non-quasiconvex embedding of relatively hyperbolic
groups, (2012), arXiv:1211.2730.
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Generic complexity
of the conjugacy problem in HNN-extensions and algorithmic
stratification of Miller's groups, Internat. J. Algebra Comput. 17
(2007), no. 5-6, 963-997.
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Multiplicative
measures on free groups, Internat. J. Algebra Comput. 13 (2003), no.
6, 705-731.
A. Borovik, A.G. Myasnikov, V. Shpilrain, Measuring sets in infinite
groups, Computational and statistical group theory, (Las Vegas,
NV/Hoboken, NJ, 2001), 21-42, Contemp. Math., 298, Amer. Math. Soc.,
Providence, RI, 2002.
L. Ciobanu, A. Martino, E. Ventura, The generic Hanna Neumann
conjecture and post correspondence problem, (2008), preprint.
P. Dani, I. Levcovitz, Subgroups of right-angled Coxeter groups via
Stallings-like techniques, (2019), arXiv:1908.09046.
J. Delgado Rodríguez, Extensions of free groups: algebraic,
geometric, and algorithmic aspects, PhD thesis, 2017, Universitat
Politècnica Catalunya.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent
groups, J. Algebra 352 (2012), 192–214.
J. Friedman, Sheaves on graphs, their homological invariants, and a
proof of the Hanna Neumann conjecture: with an appendix by Warren Dicks,
Mem. Amer. Math. Soc. 233 (2015), no. 1100, xii+106 pp.
J. Friedman, The strengthened Hanna Neumann conjecture I: A
combinatorial proof, (2010), arXiv:1003.5739v3.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic
theorem and generic stretching factors for free group automorphisms,
Israel J. Math. 157 (2007), 1-46.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case
complexity and decision problems in group theory, Adv. Math. 190
(2005), no. 2, 343-359.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case
complexity, decision problems in group theory, and random walks, J.
Algebra 264 (2003), no. 2, 665-694.
I. Kapovich, P. Schupp, Random quotients of the modular group are
rigid and essentially incompressible, J. Reine Angew. Math. 628
(2009), 91-119.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and
genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of
Whitehead's algorithm and isomorphism rigidity of random one-relator
groups, Pacific J. Math. 223 (2006), no. 1, 113-140.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity
and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4,
911-933.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups, Math.
Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups,
Artin groups and one-relator groups with torsion, Proc. London Math.
Soc. (3) 88 (2004), no. 1, 89-113.
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for
quasi-convex subgroups, J. Algebra 488 (2017), 442–483.
O. Kharlampovich, P. Weil, On the generalized membership problem in
relatively hyperbolic groups, Fields of logic and computation. III,
147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.
S. Margolis, J. Meakin, Z. Sunik, Distortion functions and the
membership problem for submonoids of groups and monoids, Geometric
methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc.,
Providence, RI, 2005.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related
problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
M. Shusterman, P. Zalesskii, Virtual retraction and Howson's theorem in
pro-p groups Trans. Amer. Math. Soc. 373 (2020), no. 3, 1501–1527.
B. Solie, Genericity of filling elements, Internat. J. Algebra
Comput. 22 (2012), no. 2, 1250008, 10 pp.
B. Steinberg, On a conjecture of Karrass and Solitar, J. Group
Theory 17 (2014), no. 3, 433–444.
[19] G.N. Arzhantseva, Generic
properties of finitely presented groups and Howson's Theorem,
Communications in Algebra, 26 (11) (1998), 3783-3792.
31 citations by
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, Statistical
properties of subgroups of free groups, Random Structures Algorithms
42 (2013), no. 3, 349–373.
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, On two
distributions of subgroups of free groups, Proceedings of the
Seventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
82–89, SIAM, Philadelphia, PA, 2010.
F. Bassino, A. Martino, C. Nicaud, P. Weil, Random presentations and
random subgroups: a survey, (2017), arXiv:1702.01942.
F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev,
I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, Complexity and
randomness in group theory: GAGTA book 1, De Gruyter, 2020, xii+374
pp. H. Bigdely, A non-quasiconvex embedding of relatively hyperbolic
groups, (2012), arXiv:1211.2730.
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Generic complexity
of the conjugacy problem in HNN-extensions and algorithmic
stratification of Miller's groups, Internat. J. Algebra Comput. 17
(2007), no. 5-6, 963-997.
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Multiplicative
measures on free groups, Internat. J. Algebra Comput. 13 (2003), no.
6, 705-731.
A. Borovik, A.G. Myasnikov, V. Shpilrain, Measuring sets in infinite
groups, Computational and statistical group theory, (Las Vegas,
NV/Hoboken, NJ, 2001), 21-42, Contemp. Math., 298, Amer. Math. Soc.,
Providence, RI, 2002.
L. Ciobanu, A. Martino, E. Ventura, The generic Hanna Neumann
conjecture and post correspondence problem, (2008), preprint.
P. Dani, I. Levcovitz, Subgroups of right-angled Coxeter groups via
Stallings-like techniques, (2019), arXiv:1908.09046.
J. Delgado Rodríguez, Extensions of free groups: algebraic,
geometric, and algorithmic aspects, PhD thesis, 2017, Universitat
Politècnica Catalunya.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent
groups, J. Algebra 352 (2012), 192–214.
J. Friedman, Sheaves on graphs, their homological invariants, and a
proof of the Hanna Neumann conjecture: with an appendix by Warren Dicks,
Mem. Amer. Math. Soc. 233 (2015), no. 1100, xii+106 pp.
J. Friedman, The strengthened Hanna Neumann conjecture I: A
combinatorial proof, (2010), arXiv:1003.5739v3.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic
theorem and generic stretching factors for free group automorphisms,
Israel J. Math. 157 (2007), 1-46.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case
complexity and decision problems in group theory, Adv. Math. 190
(2005), no. 2, 343-359.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case
complexity, decision problems in group theory, and random walks, J.
Algebra 264 (2003), no. 2, 665-694.
I. Kapovich, P. Schupp, Random quotients of the modular group are
rigid and essentially incompressible, J. Reine Angew. Math. 628
(2009), 91-119.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and
genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of
Whitehead's algorithm and isomorphism rigidity of random one-relator
groups, Pacific J. Math. 223 (2006), no. 1, 113-140.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity
and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4,
911-933.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups, Math.
Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups,
Artin groups and one-relator groups with torsion, Proc. London Math.
Soc. (3) 88 (2004), no. 1, 89-113.
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for
quasi-convex subgroups, J. Algebra 488 (2017), 442–483.
O. Kharlampovich, P. Weil, On the generalized membership problem in
relatively hyperbolic groups, Fields of logic and computation. III,
147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.
S. Margolis, J. Meakin, Z. Sunik, Distortion functions and the
membership problem for submonoids of groups and monoids, Geometric
methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc.,
Providence, RI, 2005.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related
problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
M. Shusterman, P. Zalesskii, Virtual retraction and Howson's theorem in
pro-p groups Trans. Amer. Math. Soc. 373 (2020), no. 3, 1501–1527.
B. Solie, Genericity of filling elements, Internat. J. Algebra
Comput. 22 (2012), no. 2, 1250008, 10 pp.
B. Steinberg, On a conjecture of Karrass and Solitar, J. Group
Theory 17 (2014), no. 3, 433–444.
[18] G.N. Arzhantseva, On the groups
all of whose subgroups with fixed number of generators are free,
Fundamental and Applied Mathematics, 3(3) (1997), 675-683 (in Russian).
pdf
19 citations by
Yu. Bahturin, A. Olshanskii, Actions of maximal growth, Proc.
London Math. Soc. (2010) 101(1): 27-72.
I. Bumagin, On small cancellation k-generated groups with
(k-1)-generated subgroups all free, Internat. J. Algebra Comput. 11
(2001), no. 5, 507-524.
S. Cleary, M. Elder, A. Rechnitzer, J. Taback, Random subgroups of
Thompson's group F, Groups Geom. Dyn. 4 (2010), no. 1, 91–126.
E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, Regular sets and
counting in free groups, (2009), arXiv:0906.2850.
R. Gilman, A. Miasnikov, D. Osin, Exponentially generic subsets of
groups, Illinois J. Math. 54 (2010), no. 1, 371–388.
E. Ghys, Random groups (following Misha Gromov, ...), Astérisque
No. 294 (2004), viii, 173-204.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic
theorem and generic stretching factors for free group automorphisms,
Israel J. Math. 157 (2007), 1-46.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case
complexity and decision problems in group theory, Adv. Math. 190
(2005), no. 2, 343-359.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case
complexity, decision problems in group theory, and random walks, J.
Algebra 264 (2003), no. 2, 665-694.
I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, Densities in free
groups and Zk, visible points and test elements, Math. Res. Lett. 14
(2007), no. 2, 263-284.
I. Kapovich, P. Schupp, Random quotients of the modular group are
rigid and essentially incompressible, J. Reine Angew. Math. 628
(2009), 91-119.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and
genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups, Math.
Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity
and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4,
911-933.
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups,
Artin groups and one-relator groups with torsion, Proc. London Math.
Soc. (3) 88 (2004), no. 1, 89-113.
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of
Whitehead's algorithm and isomorphism rigidity of random one-relator
groups, Pacific J. Math. 223 (2006), no. 1, 113-140.
I. Kapovich, R. Weidmann, Nielsen equivalence in a class of random
groups, J. Topol. 9 (2016), no. 2, 502–534.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related
problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
[17] G.N. Arzhantseva and A.Yu.
Ol'shanskii, Generality of the class of groups in which subgroups
with a lesser number of generators are free,
Mathematical Notes, 59(3-4) (1996), 350-355. pdf
69 citations by
Y. Antolín, L. Ciobanu, N. Viles, On the asymptotics of visible
elements and homogeneous equations in surface groups, Groups Geom.
Dyn. 6 (2012), no. 4, 619–638.
I. Babenko, S. Sabourau, Minimal volume entropy of simplicial
complexes, (2020), arXiv:2002.11069.
T. Bandman, Sh. Garion, B. Kunyavskiĭ, Equations in simple matrix
groups: algebra, geometry, arithmetic, dynamics, Cent. Eur. J. Math.
12 (2014), no. 2, 175–211.
T. Bandman, B. Kunyavskiĭ, Criteria for equidistribution of solutions
of word equations on SL(2, J. Algebra 382 (2013), 282–302.
F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev,
I. Rivin, V. Shpilrain, A. Ushakov, P. Weil, Complexity and
randomness in group theory: GAGTA book 1, De Gruyter, 2020, xii+374
pp.
F. Bassino, A. Martino, C. Nicaud, P. Weil, Random presentations and
random subgroups: a survey, (2017), arXiv:1702.01942.
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, Statistical
properties of subgroups of free groups, Random Structures Algorithms
42 (2013), no. 3, 349–373.
F. Bassino, C. Nicaud, P. Weil, On the genericity of Whitehead
minimality, J. Group Theory 19 (2016), no. 1, 137–159.
F. Bassino, C. Nicaud, P. Weil, Generic properties of subgroups of
free groups and finite presentations, Algebra and Computer Science,
677, American Mathematical Society, pp.1-44, 2016. Contemporary
Mathematics.
F. Bassino, C. Nicaud, P. Weil, Silhouettes and generic properties of
subgroups of the modular group, (2020), arXiv:2011.09179.
G. Bergman, On monoids, 2-firs, and semifirs, Semigroup Forum 89
(2014), no. 2, 293–335.
A. Bishop, M. Ferov, Density of metric small cancellation in finitely
presented groups, J. Groups Complex. Cryptol. 12 (2020), no. 2,
Paper No. 1, 18 pp.
R. Brown, J. Nan, Stabilizers of fixed point classes and Nielsen
numbers of n-valued maps, Bull. Belg. Math. Soc. Simon Stevin 24
(2017), no. 4, 523–535.
I. Bumagin, On small cancellation k-generated groups with
(k-1)-generated subgroups all free, Internat. J. Algebra Comput. 11
(2001), no. 5, 507-524.
A. Carnevale, M. Cavaleri, Partial word and equality problems and
Banach densities, Adv. Math. 368 (2020), 107133, 16 pp.
Ch. Cashen, J. Manning, Virtual geometricity is rare, LMS J.
Comput. Math. 18 (2015), no. 1, 444–455.
M. Cavaleri, Følner functions and the generic word problem for
finitely generated amenable groups, J. Algebra 511 (2018), 388–404.
T. Ceccherini-Silberstein, A. Samet-Vaillant, Asymptotic invariants
of finitely generated algebras. A generalization of Gromov's
quasi-isometric viewpoint, Functional analysis. J. Math. Sci. (N.Y.)
156 (2009), no. 1, 56–108.
S. Cleary, M. Elder, A. Rechnitzer, J. Taback, Random subgroups of
Thompson's group F, Groups Geom. Dyn. 4 (2010), no. 1, 91–126.
P. Dani, I. Levcovitz, Subgroups of right-angled Coxeter groups via
Stallings-like techniques, (2019), arXiv:1908.09046.
E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, Regular sets and
counting in free groups, (2009), arXiv:0906.2850.
I. Gekhtman, S. Taylor, G. Tiozzo, Counting loxodromics for
hyperbolic actions, J. Topol. 11 (2018), no. 2, 379–419.
I. Gekhtman, S. Taylor, G. Tiozzo, Counting problems in graph
products and relatively hyperbolic groups, Israel J. Math. 237
(2020), no. 1, 311–371.
E. Ghys, Random groups (following Misha Gromov, ...), Astérisque
No. 294 (2004), viii, 173-204.
R. Gilman, A. Miasnikov, D. Osin, Exponentially generic subsets of
groups, Illinois J. Math. 54 (2010), no. 1, 371–388.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent
groups, J. Algebra 352 (2012), 192–214.
N. Gupta, I. Kapovich, The primitivity index function for a free
group, and untangling closed curves on hyperbolic surfaces. With an
appendix by Khalid Bou-Rabee, Math. Proc. Cambridge Philos. Soc. 166
(2019), no. 1, 83–121.
L. Guyot, Estimating Minkowski dimensions in the space of marked
groups, Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 1, 107-124.
P. de la Harpe, Uniform growth in groups of exponential growth,
Geom. Dedicata 95 (2002), 1-17.
A. Juhász, A Freiheitssatz for Whitehead graphs of one-relator groups
with small cancellation, Comm. Algebra 37 (2009), no. 8, 2714–2741.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic
theorem and generic stretching factors for free group automorphisms,
Israel J. Math. 157 (2007), 1-46.
I. Kapovich, On mathematical contributions of Paul E. Schupp,
Illinois J. Math. 54 (2010), no. 1, 1–9.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case
complexity and decision problems in group theory, Adv. Math. 190
(2005), no. 2, 343-359.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case
complexity, decision problems in group theory, and random walks, J.
Algebra 264 (2003), no. 2, 665-694.
I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, Densities in free
groups and Zk, visible points and test elements, Math. Res. Lett. 14
(2007), no. 2, 263-284.
I. Kapovich, P. Schupp, Random quotients of the modular group are
rigid and essentially incompressible, J. Reine Angew. Math. 628
(2009), 91-119.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and
genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity
and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4,
911-933.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii
method and the isomorphism problem for one-relator groups, Math.
Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups,
Artin groups and one-relator groups with torsion, Proc. London Math.
Soc. (3) 88 (2004), no. 1, 89-113.
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of
Whitehead's algorithm and isomorphism rigidity of random one-relator
groups, Pacific J. Math. 223 (2006), no. 1, 113-140.
I. Kapovich, R. Weidmann, Kleinian groups and the rank problem,
Geom. Topol. 9 (2005), 375-402.
I. Kapovich, R. Weidmann, Freely indecomposable groups acting on
hyperbolic spaces, Internat, J. Algebra Comput. 14 (2004), no. 2,
115-171.
I. Kapovich, R. Weidmann, Nielsen equivalence in a class of random
groups, J. Topol. 9 (2016), no. 2, 502–534.
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for
quasi-convex subgroups, (2014), arXiv:1408.1917.
O. Kharlampovich, P. Weil, On the generalized membership problem in
relatively hyperbolic groups, Fields of logic and computation. III,
147–155, Lecture Notes in Comput. Sci., 12180, Springer, Cham, 2020.
S. Kim, Ch. Staecker, Dynamics of random selfmaps of surfaces with
boundary, Discrete Contin. Dyn. Syst. 34 (2014), no. 2, 599–611.
I. Kozakov, Percolation and Ising model on graphs with tree-like
structure, (2008), PhD thesis, Vanderbilt University.
Y. Liu, M. M. Wood, The free group on n generators modulo n+u random
relations as n goes to infinity, J. Reine Angew. Math. 762 (2020),
123–166.
L. Louder, H. Wilton, Negative immersions for one-relator groups,
(2018), arXiv:1803.02671.
J. Mackay, Conformal dimension and random groups, Geom. Funct.
Anal. 22 (2012), no. 1, 213–239.
J. Maher, A. Sisto, Random subgroups of acylindrically hyperbolic
groups and hyperbolic embeddings, Int. Math. Res. Not. IMRN 2019,
no. 13, 3941–3980.
A. Mann, How groups grow, London Mathematical Society Lecture
Note Series, 395. Cambridge University Press, Cambridge, 2012. x+199 pp.
S. Margolis, J. Meakin, Z. Sunik, Distortion functions and the
membership problem for submonoids of groups and monoids, Geometric
methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc.,
Providence, RI, 2005.
L. Markus-Epstein, Stallings foldings and subgroups of amalgams of
finite groups, Internat. J. Algebra Comput. 17 (2007), no. 8,
1493-1535.
A. Myasnikov, V. Shpilrain, A. Ushakov, Group-based cryptography,
Birkhäuser, 2008.
Y. Ollivier, Sharp phase transition theorems for hyperbolicity,
Geom. Funct. Anal. 14 (2004), no. 3, 595-679.
Y. Ollivier, Critical densities for random quotients of hyperbolic
groups, C. R. Math. Acad. Sci. Paris 336 (2003), no. 5, 391-394.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios
Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related
problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
P. Schupp, Coxeter groups, 2-completion, perimeter reduction and
subgroup separability, Geom. Dedicata 96 (2003), 179-198.
V. Shpilrain, Average-case complexity of the Whitehead problem for a
free group, (2021), arXiv:2105.01366.
I. Snopce, S. Tanushevski, Asymptotic density of test elements in
free groups and surface groups, Int. Math. Res. Not. IMRN 2017, no.
18, 5577–5590.
B. Solie, Genericity of filling elements, Internat. J. Algebra
Comput. 22 (2012), no. 2, 1250008, 10 pp.
Ch. Staecker, Typical elements in free groups are in different
doubly-twisted conjugacy classes, Topology Appl. 157 (2010), no.
10-11, 1736–1741.
M. Steenbock, Rips-Segev torsion-free groups without the unique
product property, J. Algebra 438 (2015), 337–378.
R. Weidmann, On the rank of quotients of hyperbolic groups, J.
Group Theory 16 (2013), no. 5, 651–665.
D. T. Wise, Sectional curvature, compact cores, and local
quasiconvexity, Geom. Funct. Anal. 14 (2004), no. 2, 433-468.
D. T. Wise, An Invitation to Coherent Groups. What's Next?,
edited by Dylan Thurston, Princeton: Princeton University Press, 2020, pp.
326-414.
[16] G.N. Arzhantseva, Generic
properties of finitely presented groups,
PhD thesis, Moscow Lomonosov State University, December 1998.
Books (edited):
[15] G.N. Arzhantseva, A.Valette (eds.),
Limits of graphs in group theory and computer science, ,
Fundamental Sciences, EPFL Press, Lausanne, 2009, 305 pp.
book
[14] G.N. Arzhantseva, L. Bartholdi, J. Burillo, and E.
Ventura (eds.), Geometric group theory, ,
Fundamental Sciences, EPFL Press, Lausanne, 2009, 305 pp.
book
Submitted papers and preprints:
[13] G.N. Arzhantseva, D. Kielak, T. de Laat, D. Sawicki, Origami expanders, arXiv:2112.11864. pdf
[12] G.N. Arzhantseva, D. Osajda, Graphical
small cancellation groups with the Haagerup property,
(2014). pdf
14 citations by
V. Alekseev, M. Finn-Sell, Sofic boundaries of groups and coarse
geometry of sofic approximations, (2016), arXiv.org:1608.02242.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky
conjecture, Operator algebras and their applications, 1-33, Contemp.
Math., 671, Amer. Math. Soc., Providence, RI, 2016.
J. Deng, Q. Wang, G. Yu, The coarse Baum-Connes conjecture for
certain extensions and relative expanders, (2021), arXiv:2102.10617.
M. Finn-Sell, Controlled analytic properties and the quantitive
Baum-Connes Conjecture, (2019), arXiv:1908.02131.
D. Gruber, A. Sisto, Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic, (2014),
arXiv:1411.7367.
S. Knudby, On connected Lie groups and the approximation property
(2016), arXiv:1603.05518.
M. Mimura, Amenability versus non-exactness of dense subgroups of a
compact group. J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups, Journal of
Topology and Analysis 13 (2021), no. 1, 1–47.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part II: Fibred coarse embeddings, Anal. Geom. Metr.
Spaces 7 (2019), no. 1, 62-108.
D. Osajda, Small cancellation labellings of some infinite graphs and
applications, (2014), arXiv.org:1406.5015.
N. Ozawa, Y. Suzuki, On characterizations of amenable C*-dynamical
systems and new examples, (2020), arXiv:2011.03420.
D. Sawicki, Warped cones over profinite completions, J. Topol.
Anal. 10 (2018), no. 3, 563-584.
D. Sawicki, J. Wu, Straightening warped cones, Journal of
Topology and Analysis (2020), 1-25.
Q. Wang, Y. Zhang, The coarse Novikov conjecture for extensions of
coarsely embeddable groups, (2021), arXiv:2105.04753.
[11] G.N. Arzhantseva, C. Drutu, Geometry of infinitely
presented small cancellation groups, Rapid Decay and
quasi-homomorphisms, (2014). pdf
5 citations by
M. Brandenbursky, S. Gal, J. Kędra, M. Marcinkowski, The cancellation
norm and the geometry of bi-invariant word metrics, Glasg. Math. J.
58 (2016), no. 1, 153–176.
I. Chatterji, Introduction to the rapid decay property, (2016),
arXiv:1604.06387.
D. Gruber, A. Sisto, Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic, (2014),
arXiv:1408.4488
A. Martin, Complexes of groups and geometric small cancellation over
graphs of groups, (2013), arXiv:1306.6847v2.
M. Sapir, The rapid decay property and centroids in groups, J.
Topol. Anal. 7 (2015), no. 3, 513–541.
[10] G.N.
Arzhantseva and T. Delzant, Examples of random groups,
(2008).
first version (October 28, 2008), revised version (August 26, 2011).
pdf
74 citations by
A. Bartels, W. Lueck, The Borel conjecture for hyperbolic and
CAT(0)-groups, Ann. of Math. (2) 175 (2012), no. 2, 631–689.
M. Bestvina, V. Guirardel, C. Horbez, Boundary amenability of Out(FN)
, (2017), arXiv:1705.07017.
P. Baum, Dirac operator and K-theory for discrete groups. A
celebration of the mathematical legacy of Raoul Bott, 97–107, CRM
Proc. Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky
conjecture, Operator algebras and their applications, 1-33, Contemp.
Math., 671, Amer. Math. Soc., Providence, RI, 2016.
P. Baum, E. Guentner, R. Willett, Expanders, exact crossed products,
and the Baum-Connes conjecture, (2013), arXiv:1311.2343.
J. Brodzki, Ch. Cave, K. Li, Exactness of locally compact groups,
Adv. Math. 312 (2017), 209–233.
M. Cordes, D. Hume, Stability and the Morse boundary, J. Lond.
Math. Soc. (2) 95 (2017), no. 3, 963–988.
Y. de Cornulier, Y. Stalder, A. Valette, Proper actions of wreath
products and generalizations, Trans. Amer. Math. Soc. 364 (2012),
no. 6, 3159–3184.
R. Coulon, Asphericity and small cancellation theory for rotation
families of groups, Groups Geom. Dyn. 5 (2011), no. 4, 729–765.
R. Coulon, Automorphismes extérieurs du groupe de Burnside libre,
PhD thesis, University of Strasbourg, 2010.
R. Coulon, On the geometry of Burnside quotients of torsion free
hyperbolic groups. Internat. J. Algebra Comput. 24 (2014), no. 3,
251–345.
R. Coulon, Théorie de la petite simplification: une approche
géométrique [d'après F. Dahmani, V. Guirardel, D. Osin et S. Cantat, S.
Lamy], (French) [Small cancellation theory: a geometric approach
(after F. Dahmani, V. Guirardel, D. Osin, and S. Cantat, S. Lamy)]
Astérisque No. 380, Séminaire Bourbaki. Vol. 2014/2015 (2016), Exp. No.
1089, 1–33.
R. Coulon, D. Gruber, Small cancellation theory over Burnside groups,
(2017), arXiv:1705.09651.
R. Coulon, M. Hull, C. Kent, A Cartan-Hadamard type result for
relatively hyperbolic groups, Geom. Dedicata 180 (2016), 339–371.
F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups
and rotating families in groups acting on hyperbolic spaces, Mem.
Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
T. Delabie, A. Khukhro, Box spaces of the free group that neither
contain expanders nor embed into a Hilbert space. Advances in
Mathematics 336 (2018), 70-96.
T. Delabie, M. Tointon, The asymptotic dimension of box spaces of
virtually nilpotent groups, Discrete Math. 341 (2018), no. 4,
1036–1040.
T. Deprez, Ozawa's class S for locally compact groups and unique
prime factorization, (2019), arXiv:1904.02090.
A. Dranishnikov, M. Zarichnyi, Asymptotic dimension, decomposition
complexity, and Haver's property C, Topology Appl. 169 (2014),
99–107.
C. Druţu, M. Kapovich, Geometric group theory, With an appendix
by Bogdan Nica. American Mathematical Society Colloquium Publications, 63.
American Mathematical Society, Providence, RI, 2018. xx+819 pp.
A. Eskenazis, Geometric inequalities and advances in the Ribe program,
PhD thesis, 2019, Princeton University.
A. Eskenazis, M. Mendel, A. Naor, Nonpositive curvature is not
coarsely universal, Invent. Math. 217 (2019), no. 3, 833-886.
M. Finn-Sell, Almost quasi-isometries and more non-C*-exact groups,
Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 3, 393–403.
M. Finn-Sell, Controlled analytic properties and the quantitive
Baum-Connes Conjecture, (2019), arXiv:1908.02131.
M. Finn-Sell, On the Baum-Connes conjecture for Gromov monster groups,
(2014), arXiv:1401.6841.
M. Gerasimova, D. Gruber, N. Monod, A. Thom, Asymptotics of Cheeger
constants and unitarisability of groups, (2018), arXiv:1801.09600.
M. P. Gomez Aparicio, P. Julg, A. Valette, The Baum–Connes
conjecture: an extended survey, In Advances in Noncommutative
Geometry (pp. 127-244), 2019, Springer, Cham.
D. Gruber, Infinitely presented C(6)-groups are SQ-universal, J.
Lond. Math. Soc. (2) 92 (2015), no. 1, 178–201.
D. Gruber, Groups with graphical C(6) and C(7) small cancellation
presentations, Trans. Amer. Math. Soc. 367 (2015), no. 3, 2051–2078.
D. Gruber, A. Sisto, Infinitely presented graphical small
cancellation groups are acylindrically hyperbolic , Ann. Inst.
Fourier (Grenoble) 68 (2018), no. 6, 2501–2552.
D. Gruber, A. Sisto, Divergence and quasi-isometry classes of random
Gromov's monsters, (2018), arXiv:1805.04039.
D. Gruber, A. Sisto, R. Tessera, Random Gromov's monsters do not act
non-elementarily on hyperbolic spaces, Proc. Amer. Math. Soc. 148
(2020), no. 7, 2773–2782.
E. Guentner, R. Tessera, G. Yu, A notion of geometric complexity and
its application to topological rigidity, arxiv:1008.0884v1.
E. Guentner, R. Tessera, G. Yu, Discrete groups with finite
decomposition complexity, Groups Geom. Dyn. 7 (2013), no. 2,
377–402.
V. Guirardel, Geometric small cancellation, Geometric group
theory, 55–90, IAS/Park City Math. Ser., 21, Amer. Math. Soc., Providence,
RI, 2014.
S. Han, Relative hyperbolicity of graphical small cancellation groups
, (2020), arXiv:2010.13528.
D. Hume, Direct embeddings of relatively hyperbolic groups with optimal
ℓp compression exponent, J. Reine Angew. Math. 703 (2015), 147–172.
D. Hume, Separation profiles, coarse embeddability and inner
expansion, (2014), arXiv:arXiv:1410.0246v1.
C. Horbez, J. Huang, Boundary amenability and measure equivalence
rigidity among two-dimensional Artin groups of hyperbolic type,
(2020), arXiv:2004.09325.
H. Izeki, T. Kondo, Sh. Nayatani, N-step energy of maps and the
fixed-point property of random groups, Groups Geom. Dyn. 6 (2012),
no. 4, 701–736.
R. Kasilingam, Topological rigidity problems, (2015),
arXiv:1510.04139.
A. Khukhro, Espaces et groupes non exacts admettant un plongement
grossier dans un espace de Hilbert, Séminaire Bourbaki 71e année,
2018-2019, no. 1154.
M. Kotowski, Gromov's random group, (2013), notes, https://www.mimuw.edu.pl/~mk249019/notes-01-03-2013.pdf.
V. Lafforgue, Conjecture de Baum-Connes, théorie de Fonataine en
caractéristique p, et programme de Langlands géométriques, (2009),
Habilitation thesis, University of Paris 7.
W. Lueck, Survey on aspherical manifolds, European Congress of
Mathematics, 53–82, Eur. Math. Soc., Zürich, 2010.
W. Lueck, Aspherical manifolds, Bulletin of the Manifold Atlas
2012, 1-17.
W. Lueck, Some open problems about aspherical closed manifolds,
(2014) In: Ancona V., Strickland E. (eds) Trends in Contemporary
Mathematics. Springer INdAM Series, vol 8. Springer, Cham.
W. Lueck, K- and L-theory of group rings, (2010),
arXiv:1003.5002v1.
W. Lueck, Isomorphism conjectures in K- and L-theory, 2021,
http://www.him.uni-bonn.de/lueck/data/ic.pdf.
M. Mimura, Amenability versus non-exactness of dense subgroups of a
compact group. J. Lond. Math. Soc. (2) 100 (2019), no. 2, 592-622.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse
geometry, Part I: Coarse embeddings of amenable groups, Journal of
Topology and Analysis 13 (2021), no. 1, 1–47.
A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild
groups, Compos. Math. 147 (2011), no. 5, 1546–1572.
S. Nayatani, Fixed‐point property for affine actions on a Hilbert
space, RIMS Kôkyûroku Bessatsu B66 (2017), 115−131.
P. Nowak, G. Yu, Large-Scale geometry, (2010), EMS publishing
house, to appear. http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf.
P. Nowak, Group actions on Banach spaces, Handbook of group
actions. Vol. II, 121–149, Adv. Lect. Math. (ALM), 32, Int. Press,
Somerville, MA, 2015.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios
Matemáticos [Mathematical Surveys], 10. Sociedade Brasileira de
Matemática, Rio de Janeiro, 2005. ii+100 pp.
D. Osajda, Small cancellation labellings of some infinite graphs and
applications, Acta Math. 225 (2020), no. 1, 159-191.
G. Pisier, Interpolation and Fatou-Zygmund property for completely
Sidon subsets of discrete groups (New title: Completely Sidon sets in
discrete groups), (2017), arXiv:1706.03844.
G. Pisier, Tensor products of C*-algebras and operator spaces,
London Mathematical Society student texts 96, Cambridge, New York,
Cambridge University Press, 2020, x+484 pp.
M. Puschnigg, The Baum-Connes conjecture with coefficients for
word-hyperbolic groups, (after Vincent Lafforgue). Astérisque No.
361 (2014), Exp. No. 1062, vii, 115–148.
M. Sapir, A Higman embedding preserving asphericity, J. Amer.
Math. Soc. 27 (2014), no. 1, 1–42.
M. Sapir, Aspherical groups and manifolds with extreme properties,
(2011), arXiv:1103.3873v3.
M. Sapir, Asymptotic invariants, complexity of groups and related
problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
D. Sawicki, J. Wu, Straightening warped cones, (2017),
arXiv:1705.06725.
J. Špakula, R. Willett, On rigidity of Roe algebras, Adv. Math. 249
(2013), 289–310.
F. Vigolo, Geometry of actions, expanders and warped cones, PhD
thesis, 2018, University of Oxford.
Sh. Weinberger, G. Yu, Finite part of operator K-theory for groups
finitely embeddable into Hilbert space and the degree of nonrigidity of
manifolds, Geom. Topol. 19 (2015), no. 5, 2767–2799.
S. White, R. Willett, Cartan subalgebras in uniform Roe algebras,
Groups Geom. Dyn. 14 (2020), no. 3, 949–989.
R. Willett, G. Yu, Higher index theory for certain expanders and
Gromov monster groups II, Adv. Math. 229 (2012), no. 3, 1762–1803.
R. Willett, G. Yu, Higher index theory for certain expanders and
Gromov monster groups I, Adv. Math. 229 (2012), no. 3, 1380–1416.
R. Willett, G. Yu, Higher index theory, (2019),
https://math.hawaii.edu/~rufus/Skeleton.pdf.
R. Willett, Property A and graphs with large girth, J. Topol.
Anal. 3 (2011), no. 3, 377–384.
Z. Xie, G. Yu, Higher invariants in noncommutative geometry, In:
Chamseddine A., Consani C., Higson N., Khalkhali M., Moscovici H., Yu G.
(eds) Advances in Noncommutative Geometry, 2019, Springer, Cham.
G. Yu, The Novikov conjecture, Russ. Math. Surv 74 (2019), no. 3,
525–541.
[9] G.N. Arzhantseva, P.-A. Cherix,
Quantifying metric approximations of discrete groups,
preprint, University of Geneva, (2008), revised version (2020),
submitted. pdf
4 citations by
H. Bradford, Quantifying local embeddings into finite groups,
(2021), arXiv:2104.07111.
H. Bradford, D. Dona, Topological full groups of minimal subshifts
and quantifying local embeddings into finite groups, (2021),
arXiv:2106.09145.
F. Fournier-Facio, Ultrametric analogues of Ulam stability of groups
, (2021), arXiv:2105.00516.
A. Ivanov, Sofic profiles of S(ω) and computability, Arch. Math.
Logic 60 (2021), no. 3-4, 477–494.
[8] G.N. Arzhantseva, An algorithm
detecting Dehn presentations,
preprint, University of Geneva, (2000). pdf
3 citations by
A. Darbinyan, The word and conjugacy problems in lacunary hyperbolic
groups, (2017), arXiv:1708.04591.
V. Diekert, A. Duncan, A. Myasnikov, Geodesic rewriting systems and
pregroups, (2009), arXiv.org:0906.2223.
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex
subgroups (2014), arXiv:1408.1917.
Papers in Theoretical Computer Science/Applied mathematics (refereed):
[7] G.N. Arzhantseva, J. Díaz, J. Petit,
J.D.P. Rolim, and M. Serna, Broadcasting on networks of sensors
communicating through directional antennas,
Ambient Intelligence Computing, 1-12, Proceedings, CTI Press and
Ellinika Grammata, 2003. pdf
[6] G.N. Arzhantseva and J.D.P. Rolim,
Considerations for a geometric model of the web,
Approximation and Randomization Algorithms in Communication Networks,
Rome, 2002, 1-11, Proceedings, Carleton Scientific.
[5] G.N. Arzhantseva and J.D.P. Rolim,
Computability and Complexity,
e-learning theoretical course of the
Virtual Logic Laboratory (a project of the Swiss
Virtual Campus), 90 pp. (electronic tutorial)
Short communications:
[4] G. Arzhantseva, A. Thom, A.
Valette, Finite-dimensional approximations of discrete
groups,,
Oberwolfach Rep., 8(2) (2011), 1429-1467.
pdf
[3] G. Arzhantseva, Uniform
embeddings of groups into a Hilbert space,,
in I. Hambleton, E. Pedersen, A. Ranicki, H. Reich (eds.),
Manifold perspectives, Oberwolfach Rep. 6(2) (2009), 1527-1529.
pdf
[2] G. Arzhantseva, The
uniform Kazhdan property for SLn(Z), n>3,,
l'Enseignement Mathématique 54(2) (2008), 12.
[1] G. Arzhantseva, The
entropy of a group endomorphismce,,
in G. Knieper, L. Polterovich, L. Potyagailo (eds.),
Geometric group theory, hyperbolic dynamics and symplectic
geometry, embeddings of groups into a Hilbert space,
Oberwolfach Rep. 33 (2006), 2044-2045.
book
Lecture notes:
G.N. Arzhantseva and M. Lustig, A first course in
geometric group theory, graduate textbook project.
G.N. Arzhantseva, Geometry of small cancellation and
Burnside factors, lecture notes of the Borel seminar
minicourse.
G.N. Arzhantseva, Infinite groups: Growth and Isoperimetry,
lecture notes, the IIIe Cycle Romand de mathématiques.
Conference announcements:
G.N. Arzhantseva, Genericity of Howson's property of
finitely presented groups,
International Algebraic Conference dedicated to the memory
of D.K. Faddeev, Saint-Petersburg, Russia, 24-30 June, 1997.
Abstracts, 158-159.
G.N. Arzhantseva, Generic classes of finitely
presented groups,
International Algebraic Conference dedicated to the memory
of D.K. Faddeev, Saint-Petersburg, Russia, 24-30 June, 1997.
Abstracts, 158-159.
G.N. Arzhantseva, Generic classes of finitely
presented groups,
International Conference "Mathematics. Modeling. Ecology"
Volgograd, Russia, 27-31 May, 1996. Abstracts, p.23.